
Online Appendix

Omitted Proofs of Lemmas

Proof of Lemma 3. We begin by showing the first point above. The second point
follows by definition of αn(p).

First, suppose by contradiction that there exists a (p, n) on-path such that αn(p) <

min{β(1−p)/kn, 1}. Recalling that p(s) is given by (2), I begin by showing that for all s
sufficiently small, (p(s), n) is on-path. Suppose not by contradiction. Since (p, n) is on-
path, this implies that Fp,n(s) = 1, which contradicts Lemma 1. It thus follows from
(4), combined with the piecewise twice differentiability and right-differentiability of
Fp,n, that αn(p(s)) is continuous in some right-neighborhood of s = 0. Thus, there
exists an ε > 0 such that for all s ∈ [0, ε], knαn(p(s)) < β(1− p).

Next, I claim that Fp,n(ε) > 0. Suppose this is not true by contradiction. Then, it
follows that Fp,n(s) = 0 for all s ∈ [0, ε], implying by definition of α that αn(p) = 1,
contradicting the assumption that αn(p) < 1. Now, define the following deviation
F̃p,n, which shifts the mass Fp,n places on [0, ε] to ∞:

F̃p,n(s) =


0 if s ∈ [0, ε]

Fp,n(s)− Fp,n(ε) if s ∈ (ε,∞)

1 if s = ∞.

The admissibility (i.e., right-continuity and piecewise twice-differentiability) of F̃p,n

follows from the admissibility of Fp,n. We now wish to show that F̃p,n is a profitable
deviation at (p, n). Let Ψ denote the first-report distribution under the strategy profile
where all players play Fp,n, and let Ψ̃ denote the first-report distribution under the
strategy profile where i plays F̃p,n and all j ̸= i play Fp,n.

By definition of Ψ, Ψ̃i(s) = Ψi(s)−X(s), where

X(s) =


p
∫ s
0 e

−λr(N−n)(1− Fp,n(r))
N−nd(e−λr(Fp,n(r)− 1))

+(1− p)
∫ s
0 (1− Fp,n(r))

N−ndFp,n(r) if s ∈ [0, ε]

X(ε) if s > ε.

X(s) is weakly increasing in s. Furthermore, because Fp,n(ε) > 0, it follows that
Fp,n(s) strictly increases on [0, ε]. Thus, X(s) is strictly increasing at some s ∈ [0, ε].
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Now, by the above definition:∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨ̃i(s)−

∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨi(s)

= −
∫ ε

0
[knαn(p(s))− β(1− p(s))]dX(s) > 0.

where the strict inequality follows from the fact thatX(s) is strictly increasing on [0, ε]

and the above-established fact that knαn(p(s)) < β(1− p(s)) for all s ∈ [0, ε].

Next, let us consider Ψ̃−i(s). By definition, Ψ̃−i(s) = Ψ−i(s)− Y (s), where

Y (s) = −p
∫ s

0
[e−λr(1− Fp,n(r))]

n−2Fp,n(min{r, ε})d(e−λr(Fp,n(r)− 1))−

(1− p)

∫ s

0
(1− Fp,n(r))

n−2Fp,n(min{r, ε})dFp,n(r).

Thus,∫ ∞

0
Vp−i(s),n+1dΨ̃

−i(s)−
∫ ∞

0
Vp−i(s),n+1dΨ

−i(s) =

∫ ∞

0
Vp−i(s),n+1dY (s) ≥ 0.

where the final inequality follows from the fact that Y (s) is weakly increasing in s and
Vp−i(s),n+1 ≥ 0. Combining the previous two inequalities, we obtain that Vp,n(F̃p,n) >

Vp,n(Fp,n), and thus i can profitably deviate at (p, n). Contradiction. □

Proof of Lemma 4. Fix a (p, n) on-path. I first show that for all s ≥ 0,

αn(p(s)) =
λp(s)

λp(s) +
F ′
p,n(s+)

1−Fp,n(s)

(22)

It follows from Lemma 3 that (p(s), n) is on-path for all s ≥ 0. Thus, by Lemma 1,
Fp(s),n(0) = 0, and by (4) αn(p(s)) = λp(s)

λp(s)+F ′
p(s),n

(0+)
. Next, it follows from (3)

that F ′
p(s),n(0+) =

F ′
p,n(s+)

1−Fp,n(s)
. Combining the previous two equations yields (22). It

thus follows from the right-differentiability and piecewise twice-differentiability
of Fp,n that αn(p(s)) is right-continuous in s. It remains to show that αn(p(s)) is
left-continuous in s. Suppose by contradiction there exists an s such that αn(p(s)) is
left-discontinuous. Then there exists some d > 0 such that for all ε > 0, there exists an
sε ∈ (s − ε, s) such that |αn(p(sε)) − αn(p(s))| > d. First consider the case where for
all ε > 0, there exists an sε ∈ (s − ε, s) such that αn(p(sε)) − αn(p(s)) > d. I begin by
claiming that for all ε > 0,

Vp(sε),n = Vp(sε),n(δs−sε). (23)
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Note that there exists some s∗ ∈ (s,∞] such that Vp(sε),n = Vp(sε),n(δs∗−sε). To see why
this must hold, suppose not, by contradiction. Then it must be that Fp(sε),n places full
mass on [0, s− sε], and thus, either Lemma 1 or (3) would be violated. Thus, we have

Vp(sε),n =

∫ s−sε

0
knαn(p(sε + r))dΨi(r) + (N − n)

∫ s−sε

0
Vpi(sε+r),n+1dΨ

−i(r)

+ (1−
∑
j

Ψj(s− sε))Vp(s),n(δs∗−s)

=

∫ s−sε

0
knαn(p(sε + r))dΨi(r) + (N − n)

∫ s−sε

0
Vpi(sε+r),n+1dΨ

−i(r)

+ (1−
∑
j

Ψj(s− sε))Vp(s),n(δ0) = Vp(sε),n(δs−sε),

where Ψ is the first-report distribution associated with the strategy profile in which i
plays δ∞ and all j ̸= i play Fp(sε),n. Note that the equality follows from the fact that
αn(p(s)) < 1, and thus by Lemma 2, Vp(s),n = Vp(s),n(δ0). However, note that for all
ε > 0,

Vp(sε),n(δs−sε) =

∫ s−sε

0
knαn(p(sε + r))dΨi(r) + (N − n)

∫ s−sε

0
Vpi(sε+r),n+1dΨ

−i(r)

+(1−
∑
j

Ψj(s− sε))[knαn(p(s), n)− β(1− p(s))].

Because the Ψj are absolutely continuous,

lim
ε→0

Vp(sε),n(δs−sε) = knαn(p(s), n)− β(1− p(s)).

Then, by the assumption that αn(p(sε))− αn(p(s)) > d, for all ε > 0 sufficiently small
Vp(sε),n(δ0) = knαn(p(sε), n)− β(1− p(sε)) > Vp(sε),n(δs−sε), contradicting (23).

Next, consider the case where for all ε > 0, αn(p(s)) − αn(p(sε)) > d. As shown
above, limε→0 Vp(sε),n(δs−sε) = Vp(s),n(δ0). Thus, for ε sufficiently small,

Vp(sε),n(δs−sε) > knαn(p(sε))− β(1− p(sε)) = Vp(sε),n(δ0).

However, since αn(p(sε)) < 1 for all ε > 0, by Lemma 2, Vp(sε),n = Vp(sε),n(δ0).
Contradiction. □

Proof of Lemma 5. Fix an (α, F ). I begin by establishing the necessity of the three
conditions specified in Definition 3 for (α, F ) to be an equilibrium. First we establish
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the necessity of part 3. of Definition 3. To this end, recall that by the selection
assumption, F1,n(0) = 1. Thus, it follows from (4) that αn(1) = 0 if (p = 1, n) is
on-path. Parts 1. and 2. of Definition (3) follow immediately from Proposition 1 and
Proposition 2, respectively.

Next, we establish the sufficiency of the above conditions for (α, F ) to be an
equilibrium. We begin by considering the case in which kn < β and p ≤ p∗n. It follows
from Definition 3 that αn(q) = 1 for all q ≤ p. Thus, by (4), Fp,n = δ∞. We want to
show that there exist no profitable deviations in this case, i.e., that Vp,n = Vp,n(δ∞). It
suffices to show that

Vp,n(δ∞) ≥ Vp,n(δs) for all s ∈ [0,∞). (24)

First, note that for all s ∈ (0,∞),

Vp,n(δs) = kn(1−p(1−e−λs(N−n+1))(
N − n

N − n+ 1
))−β(1−p) ≤ kn−β(1−p) = Vp,n(δ0).

Further, kn ≤ β and p ≤ p∗n implies that Vp,n(δ0) = kn − β(1− p) ≤ kn
N−n+1 = Vp,n(δ∞).

Thus, Vp,n(δ∞) ≥ Vp,n(δs) for all s ∈ [0,∞).

Next, we show that Fp,n is optimal when kn > β or p ≥ p∗n. We begin by showing

d

d∆
Vp,n(δ∆) = 0 for all ∆ ∈ [0,∞) if kn ≥ β and for all ∆ ∈ [0, t∗) if kn < β (25)

where t∗ is the unique solution to p(t∗) = p∗n. Note that

Vp,n(δ∆) =

∫ ∆

0
knαn(p(s))dΨ

i(s) + (N − n)

∫ ∆

0
Vpi(s),n+1dΨ

−i(s)+

(1−
∑
j

Ψj(∆))(knαn(p(∆))− β(1− p(∆))),
(26)

where Ψ is the first-report distribution associated with the strategy profile in which i
plays δ∞ and all j ̸= i play Fp,n. Then,

d

d∆
Vp,n(δ∆) = (N − n)[Vpi(∆),n+1 − knαn(p(∆)) + β(1− p(∆))]Ψ−i′(∆)− β(1− p(∆))Ψi′(∆)

+ (1−
∑
j

Ψj(∆))p′(∆)(knα
′
n(p(∆)) + β),

where Ψi′(t) ≡ d
dtΨ

i(t).

In the above, the existence of Ψj′(∆) follows from the differentiability of αn at p(∆),
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and thus, the differentiability of Fp,n at ∆. We wish to show that d
d∆Vp,n(δ∆) = 0. To

this end, we begin by deriving expressions for Ψi′(∆) and Ψ−i′(∆). First, it follows by
definition of the first-report distribution that:

Ψi(∆) = pλ

∫ ∆

0
(1− Fp,n(s))

N−ne−λ(N−n+1)sds.

Differentiating this, we obtain:

Ψi′(∆) = pλ(1− Fp,n(∆))N−ne−λ(N−n+1)∆.

Meanwhile:

Ψ−i(∆) = p

∫ ∆

0
(1−Fp,n(s))

N−n−1e−λ(N−n)sd((Fp,n(s)−1)e−λs)+(1−p)
∫ ∆

0
(1−Fp,n(s))

N−n−1F ′
p,n(s)ds.

where the existence of F ′
p,n(s) again follows from the assumption that αn is

differentiable at p(s). Differentiating this, we obtain:

Ψ−i′(∆) = (1− Fp,n(∆))N−n[
F ′
p,n(∆)

1− Fp,n(∆)
(pe−λ∆(N−n+1) + (1− p)) + pe−λ∆(N−n+1)λ].

It follows from (4) and (3) that

F ′
p,n(∆)

1− Fp,n(∆)
= λp(∆)(

1

αn(p(∆))
− 1).

Substituting this, along with the definition of p(∆), we obtain:

Ψ−i′(∆) = λ(1− Fp,n(∆))N−n(pe−λ∆(N−n+1) + (1− p))
p(∆)

αn(p(∆))
.

Note further that

1−
∑
j

Ψj(∆) = (1− Fp,n(∆))N−n(pe−λ∆(N−n+1) + (1− p)). (27)

Substituting the expressions for Ψi′(∆), Ψ−i′(∆), and 1 −
∑

j Ψ
j(∆) into the
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expression for d
d∆Vp,n(δ∆) we obtain:

d

d∆
Vp,n(δ∆) = K[

(N − n)

αn(p(∆))
(V i

p(∆),n+1 − knαn(p(∆)) + β(1− p(∆))(1− αn(p(∆))))

−knα′
n(p(∆))(1− p(∆))(N − n+ 1)].

whereK ≡ λ(1−Fp,n(∆))N−n(pe−λ∆(N−n+1)+(1−p))p(∆). Because (ODE) is satisfied
at (p(∆), n), using it to substitute in for α′

n(p(∆), we obtain (25).

Now, consider the case where kn ≥ β. To show Fp,n is optimal, it suffices to show
that all pure strategies δ∆ yield the same payoff, i.e., that

Vp,n(δ0) = Vp,n(δ∆) (28)

for all ∆ ∈ [0,∞]. It follows from (25) that (28) holds for all ∆ ∈ [0,∞). It remains to
show that (28) holds for ∆ = ∞. By (25),

Vp,n(δ0) = lim
∆→∞

Vp,n(δ∆)

= lim
∆→∞

∫ ∆

0
knαn(p(s))dΨ

i(s) + (N − n) lim
∆→∞

∫ ∆

0
Vpi(s),n+1dΨ

−i(s)+

lim
∆→∞

(1−
∑
j

Ψj(∆))(knαn(p(∆))− β(1− p(∆)))

=

∫ ∞

0
knαn(p(∆))dΨi(s) + (N − n)

∫ ∞

0
Vpi(∆),n+1dΨ

−i(s) = Vp,n(δ∞),

where the third equality follows from the limit condition limp→0+ αn(p) = β/kn.

Finally, consider the case where kn < β and p > p∗n. Because αn(p(s)) = 1 for all
s > t∗, by (4), it follows that F ′

p,n(s) = 0 for all s > t∗. Thus, the support of Fp,n is a
subset of [0, t∗]∪∞. Thus, to show Fp,n is optimal, it suffices to show that δ∆ is optimal
for ∆ ∈ [0, t∗] ∪∞. I first show that

Vp,n(δ∆) = Vp,n(δ0) for all ∆ ∈ [0, t∗] ∪∞ (29)

and then show
Vp,n(δt∗) ≥ Vp,n(δ∆)for all ∆ ∈ (t∗,∞). (30)

To show (29), recall that it follows from (25) that

Vp,n(δ0) = Vp,n(δ∆) for all ∆ ∈ [0, t∗).
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It remains to show Vp,n(δ0) = Vp,n(δs) for s ∈ {t∗,∞}. For s = t∗, it follows from the
above that

Vp,n(δ0) = lim
∆→t∗−

Vp,n(δ∆) = Vp,n(δt∗),

where the final inequality follows from (26), and the continuity of αn(p(t)) and Ψj at
t∗. I will now show Vp,n(δt∗) = Vp,n(δ∞). Note that for all ∆ ∈ [t∗,∞]:

Vp,n(δ∆) =

∫ t∗

0
knαn(p(s))dΨ

i(s)+(N−n)
∫ t∗

0
Vpi(s),n+1dΨ

−i(s)+(1−
∑
j

Ψj(t∗))Vp∗n,n(δ∆−t∗).

Thus, to show Vp,n(δt∗) = Vp,n(δ∞), it suffices to show Vp∗n,n(δ0) = Vp∗n,n(δ∞). It follows
from the definition of p∗n that:

Vp∗n,n(δ0) = kn − β(1− p∗n) =
knp

∗
n

n
= Vp∗n,n(δ∞).

Similarly, to show (30), it suffices to show that Vp∗n,n(δ0) ≥ Vp∗n,n(δ∆) for all ∆ ∈
(0,∞), which we have established in (24). □

Proof of Lemma 6. Let V̂p,n(δt) denote the value from δt under state (p, n) (i.e., under
common belief p) assuming the firm is informed and thus holds belief 1. To prove the
above statement, it suffices to show

V̂p,n(δ0) ≥ V̂p,n(δ∆) for all t ∈ [0,∞]. (31)

Fix an n and assume by induction that the statement holds for all m > n. First,
suppose kn < β and p ≤ p∗n. Then, by (P), αn(p) = 1. So, V̂p,n(δ0) = kn. This is
the maximum payoff that can be achieved for all m ≥ n, and thus (31) holds. Next,
suppose kN ≥ β. In this case, by (P) and the inductive assumption, V̂p,n(δt) = β for
all t ∈ [0,∞). Meanwhile, V̂p,n(δ∞) < β. Thus, (31) holds. Finally, suppose kn < β or
p > p∗n. Then, for all ∆ ∈ [0,∞),

V̂p,n(δ∆) = (N − n)

∫ ∆

0
kn+1αn+1(p

i(s))dΨ−i(s) + (1− (N − n)Ψ−i(∆))αn(p(∆)),

where Ψ−i(∆) =
∫∞
0 (1 − Fp,n(s))

N−ne−λ(N−n)sd((Fp,n(s) − 1)e−λs). Differentiating,
we have:

d

d∆
V̂p,n(δ∆) = [kn+1αn+1(p

i(∆))−knαn(p(∆))]Ψ−i′(∆)(N−n)+[1−(N−n)Ψ−i(∆)]p′(∆)α′
n(p(∆)),
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where Ψ−i′(∆) = λ(1− Fp,n(∆))N−ne−λ∆(N−n) p(∆)
αn(p(∆)) . Substituting, we have

d

d∆
V̂p,n(δ∆) = K[kn+1αn+1(p

i(∆))− Vpi(∆),n+1 − β(1− αn(p))(1− p)],

where K > 0 is a constant. Now, note that

Vpi(∆),n+1 ≥ Vpi(∆),n+1(δ0) = kn+1αn=1(p
i(∆))− (1− p(∆))(1− αn(p(∆))β.

Thus, d
d∆ V̂p,n(δ∆) ≤ 0, and therefore V̂p,n(δ0) ≥ V̂p,n(δ∆) for all ∆ > 0. It remains to

show that V̂p,n(δ0) > V̂p,n(δ∞).

V̂p,n(δ∞) = (N − n)

∫ ∞

0
knαn+1(p

i(s))dΨ−i(s) = lim
∆→∞

V̂p,n(δ∆) ≤ V̂p,n(δ0).

□

Proofs of Comparative Statics Results

Proof of Comparative Static 1. First, we establish part (a). Fix all other parameters
and let 0 < β < β̃. Let α and α̃ denote the equilibrium credibility functions under
β and β̃, respectively. Fix an n and assume inductively that the proposition holds for
n+1 if n < N . Note that for any (p, n) and t, p(t) will be the same under β and β̃. Thus
to show the above claim, it suffices to show that for any p, αn(p) is weakly increasing
in β, and strictly so whenever αn(p) < 1.

We begin by showing that αn(p) = 1 implies that α̃n(p) = 1. First, consider the case
where n = N . By Proposition 2, αN (p) = 1 implies that kN ≤ β. Thus, kN < β̃, which
by Proposition 1 implies that α̃N (p) = 1. Next, consider the case where n < N , and
assume αn(p) = 1. By Proposition 1, this implies that kn < β and p ≤ p∗n ≡ β−kn

β−kn/n
.

Further note that

p̃∗n ≡ β̃ − kn

β̃ − kn/n
>

β − kn
β − kn/n

≡ p∗n.

Thus, kn < β̃ and p < p̃∗n, which by Proposition 1 implies α̃n(p) = 1.

Now, suppose that αn(p) < 1. We wish to show that α̃n(p) > αn(p). Suppose by
contradiction that α̃n(p) ≤ αn(p). It follows from Proposition 2 that if kn > β̃,

lim
q→0+

αn(q) = β/kn < β̃/kn = lim
q→0+

α̃n(q).

Meanwhile, if kn ≤ β̃. limq→p̃∗n+ αn(q) < 1 = limq→p̃∗n+ α̃n(q). To see why the latter
must hold, first consider the case where n = N . It follows from Lemma 5 that α̃n(q) =
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1 for all q. Meanwhile, it follows again from Proposition 2 that αN (q) is constant in
q, and because αN (p) < 1, limq→p̃∗n+ αN (q) < 1. In the case where n < N , because
p∗n < p̃∗n, it follows from Proposition 1 that αn(p̃

∗
n) < 1.

Thus, we have that both when kn > β̃ and when kn ≤ β̃, there exists some p̂ < p

such that α̃n(p̂) > αn(p̂) and α̃n, αn satisfy (ODE) on [p̂, p] , for their respective value
of β. Thus, there exists a q ∈ [p̂, p] such that αn(q) = α̃n(q) and α′

n(q) ≥ α̃′
n(q). It

follows from (ODE) that in order for the above two conditions to hold, it must be that

X ≡ (β − β̃)(
1− αn(q)

αn(q)
)(1− q) +

Vqi,n+1 − Ṽqi,n+1

αn(q)
≥ 0. (32)

where V and Ṽ denote the value functions under β and β̃, respectively. First consider
the case where n = N . Then Vqi,n+1 = Vq̃i,n+1 = 0, and thus X < 0, contradicting (32).

Next, consider the case where n < N . First suppose that αn+1(q
i) = 1. It follows

from the inductive assumption that α̃n+1(q
i) = 1. Thus, by Lemma 5, Vqi,n+1 =

kn+1qi

N−n = Ṽqi,n+1. Again this implies that X < 0, contradicting (32). Now, suppose that
αn+1(q

i) < 1. It then follows from Lemma 2 that Vqi,n+1 = kn+1αn+1(q
i) − β(1 − qi).

Furthermore,
Ṽqi,n+1 = Ṽqi,n+1(δ0) = kn+1α̃n+1(q

i)− β̃(1− qi).

Thus, recalling that qi = αn+1(q) + (1− αn+1(q))q, we have

Vqi,n+1 − Ṽqi,n+1 ≤ kn+1(αn+1(q
i)− α̃n+1(q

i)).

Substituting this into the above expression for X , we obtain

X ≤ kn+1(αn+1(q
i)− α̃n+1(q

i))

αn(q)
< 0.

where the strict inequality follows from the inductive assumption that αn+1(q
i) <

α̃n+1(q
i)). Again, this is a contradiction of (32). □

Proof of Corollary 4. Fix all other parameters and let 0 < β < β̃. Assume a winner-
takes-all setting (kn = 0 for n > 1). Let α (V ) and α̃ (Ṽ ) denote the equilibrium
credibility (value function) under β and β̃, respectively. We want to show that Vp0,1 ≤
Ṽp0,1 and Vp0,1 < Ṽp0,1 when α1(p0) < 1.

First, suppose α1(p0) = 1. Because firms are truthful in this case,

Vp0,1 = Vp0,1(δ∞) =
k1
N
,
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where the exact same equality holds under β̃. Thus, Vp0,1 = Ṽp0,1.

Next, suppose α1(p0) < 1. It follows from Lemma 2 that Vp0,1 = Vp0,1(δ∞) and
Ṽp0,1 = Ṽp0,1(δ∞) . Now, note that

Vp0,1(δ∞) =

∫ ∞

0
k1α1(p0(s))ψ

i(s)ds and Ṽp0,1(δ∞) =

∫ ∞

0
k1α̃1(p0(s))ψ̃

i(s)ds, where

ψi(s) = pλe−λsN (1 − Fp0,1(s))
N−1 and ψ̃i(s) = pλe−λsN (1 − F̃p0,1(s))

N−1, and F (F̃ )
is the equilibrium strategy under β (β̃). Now, note by Comparative Static 1 that

α1(p0(s)) ≤ α̃1(p0(s)), (33)

where the in equality holds strictly for some interval of s. Likewise,

b1(p0(s)) ≥ b̃1(p0(s)),

where the in equality holds strictly for some interval of s. This implies

F1(p0(s)) > F̃1(p0(s)), for all s > 0.

This, combined with (33), implies that Vp0,1 < Ṽp0,1.

□

Proof of Comparative Static 2. Let λ̃ > λ > 0, and let α, α̃ denote the equilibria under
λ and λ̃, respectively, fixing all other parameters. We begin by showing that α̃n(p) =

αn(p) for any p and n. Fix an n and assume inductively that if n < N , αn+1(p) =

α̃n+1(p) for all p on-path. Let V , Ṽ denote the value functions under the equilibria
associated with λ and λ̃, respectively. Note that Vp,n+1 = Ṽp,n+1 for all p on-path. In
the case where n = N , Vp,n+1 = Ṽp,n+1 = 0, and thus this holds trivially. In the case
where n < N , this follows from the inductive assumption.

By Lemma 5, αn and α̃n must both be a solution to (P) at all (p, n) on-path, which
does not depend on λ. By Theorem 1, the solution to (P) is unique, and thus αn(p) =

α̃n(p) at all (p, n) on-path. Now fixing any p and n, let p(t) and p̃(t) denote the common
beliefs under λ and λ̃, respectively. It follows from (2) that p(t) > p̃(t) for all t > 0.
Thus, because αn(p) and α̃n(p) are both weakly decreasing in p (Proposition 3), it
follows that αn(p(t)) ≤ α̃n(p(t)). Furthermore, since α̃(p) is strictly decreasing in p

(Proposition 3) whenever αn(p) < 1 and kN > β, it follows that αn(p(t)) < αn( ˜p(t)).
□
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Proof of Comparative Static 3. Let α and α̃ denote the equilibria under N and N + 1

firms, respectively, fixing all other parameters. We begin by showing that for all p,
αn(p) ≥ α̃n(p), and αn(p) > α̃n(p) when αn(p) < 1. To this end, fix an n ∈ {1, ..., N}
and assume inductively that the claim holds for n + 1 whenever n < N . We begin
by showing that α̃n(p) = 1 implies that αn(p) = 1. Suppose that α̃n(p) = 1. By
Proposition 1, β > kn and p < p̃∗n ≡ β−kn

β−kn/(N+1−n) . Because p∗n ≡ β−kn
β−kn/(N−n) > p̃∗n, it

follows from Proposition 1 that αn(p) = 1.

Now consider the case where α̃n(p) < 1. We wish to show that α̃n(p) < αn(p). To
this end, we begin by making the following observation:

If αn and α̃n both satisfy (ODE) at q, and αn(q) = α̃n(q), then α′
n(q) > α̃′

n(q). (34)

Let us now establish this. Note first that for αn and α̃n to both satisfy (ODE) at q,
given that αn(q) = α̃n(q), the following must hold:

α′
n(q) =

−1

kn(1− q)αn(q)

N − n

N − n+ 1
(knαn(q)− Vqi,n+1 − β(1− αn(q))(1− q))

α̃′
n(q) =

−1

kn(1− q)αn(q)

N − n+ 1

N − n+ 2
(knαn(q)− Ṽqi,n+1 − β(1− αn(q))(1− q)),

where V and Ṽ denote the value functions under the equilibria with N and N + 1

total firms, respectively. Note that if n = N , α′
n(q) = 0. Meanwhile, by Proposition 3,

α̃′
n(q) < 0. Thus, α̃′

n(q) < αn(q) must hold. Next, consider the case where n < N . We
begin by observing that Vqi,n+1 > Ṽqi,n+1. To see why this must hold, first consider
the case where α̃n+1(q

i) = 1. It then follows from the inductive assumption that
αn(q

i) = 1. Then, by Lemma 5,

Ṽqi,n+1 = Ṽqi,n+1(δ∞) =
kn+1q

i

N − n
<

kn+1q
i

N − n− 1
= Vqi,n+1(δ∞) = Vqi,n+1.

Next, consider the case where α̃n(q
i) < 1. In this case, it follows from Lemma 2 that

Ṽqi,n+1 = Ṽqi,n+1(δ0) = kn+1α̃n+1(q
i)− β(1− qi) < kn+1αn+1(q

i)− β(1− qi)

= Vqi,n+1(δ0) ≤ Vqi,n+1,

where the strict inequality follows from the inductive assumption made above.
Examining the two ODEs listed above, since by Proposition 3, α′

n(q) ≤ 0, it follows
that α̃′

n(q) < α′
n(q).
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Now, assume by contradiction that αn(p) ≤ α̃n(p). We begin by showing that there
exists a q∗ < p such that α̃n(q

∗) < αn(q
∗). First consider the case where kn ≥ β. Then,

by Proposition 2,

lim
q→0+

αn(q) = lim
q→0+

α̃n(q) =
β

kn
.

Then, by the continuous differentiability of αn and α̃n on (0, p), it follows from
Equation 34 that for some q∗ < p sufficiently small αn(q

∗) > α̃n(q
∗). Next,

consider the case where kn < β, and let p∗n ≡ β−kn
β/(N−n+1)−kn

. Note by Proposition 1
that αn(p

∗
n) = 1. Meanwhile, because p∗n < p̃∗n ≡ β−kn

β/(N−n+2)−kn
, it follows from

Proposition 1 that α̃n(p
∗
n) < 1, and thus, we have for q∗ = p∗n, α̃n(q

∗) < αn(q
∗).

Since α̃n(q
∗) < αn(q

∗) and α̃n(p) ≥ αn(p), by the continuous differentiability of α
on [q∗, p], there must exist some q ∈ (q∗, p] such that αn(q) = α̃n(q) and α′

n(q) ≤ α̃′
n(q).

However, this is a contradiction of (34).

Now fixing any p and n, let p(t) and p̃(t) denote the common beliefs under N and
N + 1 firms, respectively. We wish to show that on some interval [0, t], where t > 0,
αn(p(t)) ≥ α̃n(p̃(t)) is weakly increasing in t, and strictly so whenever αn(p(t)) < 1.
First consider the case where αn(p(t)) = 1. In this case, the statement holds trivially.
Next, consider the case where αn(p) < 1. It follows from the above that αn(p) > α̃n(p).
Now note that it follows from (2) that limt→0+ p(t) − p̃(t) = 0. Since αn(p(t)) and
α̃n(p̃(t)) are both continuous in t (Lemma 4), it follows that for some t > 0, αn(p(t)) >

α̃n(p̃(t)) for all t ∈ [0, t]. □

Microfoundation for market share

In the main text, I assume that the firm’s market share from reporting a story is
knα. Here I provide a microfoundation for this.

Let N ≡ {1, ..., N} denote the set of news firms. Suppose there is a mass K > 0 of
consumers, who are indexed by x. Each consumer x subscribes to some subset Sx of
the firms. I.e., for all x, Sx ⊆ N . Let Sx denote consumer x’s subscription set. Fixing
any S ⊆ {1, ..., N}, let m(S) denote the mass of consumers x such that Sx = S, where∑

S∈2N m(S) = K. Assume that the mass of consumers with a given subscription set
does not depend on the identity of the firms within that set, but only on the number
of firms in the set. Formally, suppose that there exists γ0, γ1, ..., γN ≥ 0 such that

m(S) = γn if and only if |S| = n, where
N∑

n=1

γn

(
N

n

)
= K.

Define i’s market share to be the mass of consumers who read the story. We assume
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that a consumer reads a story if she both considers the story, and finds it optimal to
read it. To formalize this, let Ŝ ⊆ N denote the set of firms who reported before i. A
consumer x will consider a story if and only if:

1. The firm is in the consumer’s subscription set, i.e., i ∈ Sx.

2. The consumer has not previously considered the story. I.e., j ̸∈ Sx for all j ∈ Ŝ.

The mass of consumers who consider firm i’s story is then given by

N−n∑
j=1

(
N − n

j

)
γj+1 ≡ kn,

where n is the order of i’s report. Next, suppose consumer x faces a cost cx of reading
a story. Suppose that cx is i.i.d. across x, that for any x, cx is uniformly distributed on
[0, 1], and that cx is independent of x’s consideration set. Then x’s payoff from reading
a story is I[θ = 1]−cx. That is, the consumer will incur a cost cx from reading the story,
and a benefit of 1 only if the story is true. Meanwhile, the consumer’s payoff from not
reading a story is I[θ = 0]. Namely, the consumer enjoys a payoff of 1 from refusing to
story that is untrue. Assuming consumers maximize expected utility, x will read the
story if and only if

α+ (1− α)p− cx ≥ (1− α)(1− p) ⇔ ci ≤ α

where α is the credibility of i’s story. Thus i’s market share is knα.

Equilibrium credibility

Here, I justify equation (4) by showing that it is the limit of Bayes-consistent beliefs
under a discrete approximation of the game presented in Section 2. To this end, for
any ε > 0, let the ε-approximation of the game be identical to the game presented in
section (2), except with the following modification: any report made by a firm on [0, ε]

is observed by all other players (including the consumer) at ε. That is, rather than
observing ti, the players observe t̃i, where t̃i ≡ max{ti, ε}

At any (p, n) that is on-path, let αε
n(p) denote the firm’s credibility, i.e., the

consumer’s belief that si ≤ ε given that t̃i = ε, under the ε-approximation of the
game. Let αn denote the right-limit of the αε

n. Then: αn(p) ≡ limε→0+ α
ε
n(p) I now

establish that αn(p) is given by (4) at any (p, n) on-path.
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Claim 3. For any (p, n) on-path,

αn(p) =


λp

λp+bn(p)
if Fp,n(0) = 0

0 if Fp,n(0) > 0

Proof. For any ε > 0, it follows from Bayes Rule that

αε
n(p) =

p(1− e−λε)

p(1− e−λε) + Fp,n(ε)e−λε
.

If Fp,n(0) = 0, it follows from L’Hôpital’s Rule that:

lim
ε→0+

αε
n(p) =

λp

λp+ bn(p)
.

If Fp,n(0) > 0, it follows from the right-continuity of Fp,n that

lim
ε→0+

αε
n(p) =

0

0 + limε→0+ Fp,n(ε)
= 0.

□

Extension: heterogeneous ability

I now consider an extension in which firms have heterogeneous learning abilities.
This will shed light on how a firm’s credibility correlates with its ability in equilibrium.

The extended model is identical to the model above except for three changes. First,
rather than assuming that each firm is endowed with the same ability λ, each firm i

is endowed with an firm-specific ability λi, which is common knowledge. Second, for
tractability, I restrict attention to a winner-takes-all setting: i.e., I assume kn = 0 for
all n > 1. Finally, I relax the equilibrium symmetry assumption. Accordingly, let αi

denote the credibility of firm i.

I obtain an intuitive result: firms with higher ability are more credible in
equilibrium.

Proposition 5. For all (i, j) such that λi < λj , αi
1(p(t)) ≤ αj

1(p(t)). Furthermore, this
inequality is strict whenever αi

1(p(t)) < 1.

Proposition 5 states that regardless of when a report is made, a firm with higher ability
is weakly more credible, and strictly so whenever firms are not fully truthful. Let
us consider why this correlation arises. First, note that high ability firms are able
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to confirm a story more quickly and thus, all else equal, pose a greater preemptive
threat in equilibrium. This in turn implies that in comparison to a high-ability firm,
a low-ability firm faces a greater preemptive threat. Thus, the low-ability firm finds
immediate faking more advantageous. In light of this, the firms’ credibilities must
adjust in such a way to preserve their respective indifference conditions. This is
achieved endogenously by means of a lower credibility for the low-ability firm, which
ensures that it has less to gain from faking.

Proofs: heterogeneous learning ability

Here, we consider the extended model presented in above. The objective is to
establish Proposition 5. This proof will require extending certain results established
in the baseline model to the extended model. Regarding Lemmas 1-4, I will take for
granted that these hold under the extended model. Formal proofs of this are omitted
as all proofs presented under the baseline model will also apply to the extended
setting.

Next, I establish that Proposition 1 holds under the extended model. This claim is
presented as Proposition 1’. In the analysis below, I let V i

p,n denote firm i’s value.

Proposition 1’. For all i, there exists a pi∗ ∈ (0, 1] such that at any p on-path, αi
1(p) = 1 if

and only if the following two conditions hold:

1. k1 ≤ β

2. p ≤ pi∗

Furthermore, pj∗ > pi∗ whenever λj > λi.

Proof. Fix an i. Suppose that k1 ≤ β. By identical reasoning as Proposition 1, for all
q < β−k1

k1
, αi

1(q) = 1. Let

pi∗ ≡ sup{p|αi
1(p) = 1 for all q < p}.

It follows by definition that αi
1(p) = 1 for all p ≤ pi∗1 .

Next, we will show that αi
1(q) < 1 whenever k1 > β or p > pi∗1 . Suppose not by

contradiction. First, consider the case where k1 > β and αi
1(p) = 1 for some p. Then

we have that
V i
p,1(δ0) = k1p+ (k1 − β)(1− p) > k1p ≥ V i

p,1(δ∞)

Thus, i can profitably deviate at p. Contradiction. Next, consider the case where
q > pi∗1 and αi

1(p) = 1. In this case, a contradiction follows from identical reasoning to
what is presented in Proposition 1.
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Finally, we show that pj∗ > pi∗ whenever λj > λi. Suppose by contradiction that
pj∗ ≤ pi∗. Note that because j is truth telling at (pj∗, n = 1), V j

pj∗,1
(δ∞) ≥ V j

pj∗,1
(δ0).

Furthermore, because pj∗ ≤ pi∗, i is also truthful at (pj
∗
n , n = 1). Thus,

V j

pj∗1 ,1
(δ0) = V i

pj∗1 ,1
(δ∞) = k1 − β(1− p).

Now, note that because λj > λi,

V j

pj∗1 ,1
(δ∞) > V i

pj∗1 ,1
(δ∞).

Combining these inequalities we have V i
pj∗1 ,1

(δ∞) < V i
pj∗1 ,1

(δ0). However, because

αi
1(p

j∗) = 1, V j

pj∗n ,1
= V j

pj∗n ,1
(δ∞). Contradiction. □

Next, we extend Proposition 2 to this setting. Note this entails deriving an ODE
that applies to this extended model, (ODE-i).

Proposition 2’. In equilibrium, for any p on-path, if k1 ≥ β or p > pi∗, then the following
must be satisfied:

αi′
1 (p) = − β

k1
(

∑
j ̸=i λ

j∑
j λ

j
)−

∑
j ̸=i

λj

αj
1(p)∑

j λ
j(1− p)

[αi(p)− β

k1
(1− p)]. (ODE-i)

In addition, limp→0+ α
i
1(p) = β/k1 must hold if k1 > β, and limp→pi∗+ α

i
1(p) = 1 if

k1 ≤ β.

Proof. Let us first establish that (ODE-i) must hold under the conditions specified.

When k1 ≥ β or p > pi∗, it follows from Proposition 1’ that αi
1(p(t)) < 1. It then

follows from Lemma 2 that there exists an ε > 0 such that for all ∆ ∈ (0, ε),

V i
p,1(δ∆)− V i

p,1(δ0)

∆
= 0.

Recall that V i
p,1(δ0) = k1α

i
1(p)− β(1− p). Meanwhile,

V i
p,1(δ∆) =

∫ ∆

0
k1α

i
1(p(s))Ψ

i(s)ds+ (1−
∑
j

lim
s→∆−

Ψj(s))[k1α1(p(∆))− β(1− p(∆))],

where Ψ is the first-report distribution associated with the strategy profile in which
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i plays δ∞ and all j ̸= i play the equilibrium strategy F j
p,1. Specifically, for all s > 0,

Ψi(s) = pλi
∫ s

0
e−

∑
j λ

jr
∏
j ̸=i

(1− F i
p,1(r)))dr

and for j ̸= i,

Ψj(s) = p

∫ s

0
e−

∑
k ̸=j λ

kr
∏

k ̸=i ̸=j

(1− F k
p,1(r))d(−e−λjr(1− F j

p,1(r)))

+(1− p)

∫ s

0

∏
k ̸=i ̸=j

(1− F k
p,1(r))dF

j
p,1(r).

Substituting these two expressions into the above equation for V i
p,1(δ∆) and

following the same sequence of steps as in the proof of Proposition 2 yields (ODE-i).

The two limit conditions are established by the same reasoning presented in the
proof of Proposition 2. □

Proof of Proposition 5. Fix any (i, j) such that λi > λj . We want to show that
αi
1(p(t)) ≤ αj

1(p(t)) and that αi
1(p(t)) < αj

1(p(t)) whenever αi
1(p(t)) < 1. First suppose

αi
1(p) = 1. In this case, αi

1(p) ≥ αj
1(p) is trivially satisfied.

Next, suppose αi
1(p) < 1. We want to show that αi

1(p) > αj
1(p). Suppose by

contradiction that αi
1(p) ≤ αj

1(p). First consider the case where k1 < β. Then, let

q∗ ≡ inf{q|αj
1(p) < 1 and αj

1(p) < αi
1(p)}.

Because the αi
1 are continuous, it follows from Proposition 1’, and the assumption

that αi
1(p) ≤ αj

1(p), that q∗ < p exists. Again, by continuity, αj
1(q

∗) = αi
1(q

∗). It then
follows from (ODE-i) that αj′

1 (q
∗) < αi′

1 (q
∗). But this implies that for some q > q∗,

αj
1(q

∗) > αi
1(q

∗). Contradiction.

Next, consider the case where k1 ≥ β. Recall by Proposition 2’ that limp→0+ α
i
1(p) =

limp→0+ α
j
1(p). Thus, there exists some q ∈ (0, p] such that αi

1(p) ≤ αj
1(p) and αi′

1 (p) ≤
αj′
1 (p). However, it again follows from (ODE-i) that αi′

1 (p) > αj′
1 (p). Contradiction. □
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