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Abstract

I present a dynamic model of breaking news. Firms are rewarded for
preempting their competitors and for making credible reports. Errors occur when
firms fake, reporting without evidence. While even monopolists err, competition
and observational learning exacerbate errors and give rise to rich dynamics
in reporting. Competition intensifies faking by engendering a preemptive
motive, but is endogenously mitigated by improvement in credibility over time.
Observational learning causes errors to propagate through the market via a
copycat effect, where a new report triggers a surge in faking. The copycat effect
causes herding on the timing of news.
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1. Introduction

What a newspaper needs in its news, in its headlines, and on its editorial page is terseness,
humor, descriptive power, satire, originality, [...] and accuracy, accuracy, accuracy!

— Joseph Pulitzer

Accuracy is often considered the core tenet of news media. This belief is widely
held by consumers of news: the majority of US survey respondents listed accuracy
as a primary function of news, valuing it over thorough coverage, unbiasedness, and
relevance (Pew Research Center, 2019).

Despite this, public perceptions of accuracy are not favorable: 35% of respondents
state that news organizations do a good job reporting the news accurately (Pew
Research Center, 2022). While many factors may contribute to this skepticism,
consumers express particular concern about hasty reporting: 53% of respondents
state that news breaking too quickly is a major reason for errors.

These concerns are justified by many instances of factual errors by news media. In
the aftermath of the 9/11 attacks, cable news stations made several statements that
were false: NBC News reported an explosion outside the pentagon, CNN reported a
fire outside the national mall, and CBS News claimed the existence of a car bomb
outside the state department.1 Erroneous reporting has been endemic to terrorist
attacks in general, with news media misidentifying perpetrators or other key details
of the Boston bombings, Sandy Hook massacre, and London bombings. Furthermore,
such errors are not limited to terrorist attacks. In 2004, CBS News published the
Killian Documents, a collection of memos which called into question George W. Bush’s
military record. These documents could never be authenticated and were widely
believed to be forged. In 2017, ABC News falsely reported that Michael Flynn would
testify that Donald Trump had directed him “to make contact with the Russians.”2

While such errors are commonplace, they are also costly to news firms. For
one, exposure of errors can be reputationally damaging. This was especially true
of the Rolling Stone scandal, in which the magazine falsely accused a group of
University of Virginia students of sexual assault. Not only was the journalistic failure
widely reported, it resulted in several publicized lawsuits against the magazine.
Furthermore, errors can lead firms to oust journalists in an apparent effort to protect
their reputations. This was evident in the terminations of Dan Rather and Brian Ross

1 https://www.reuters.com/article/idUS182595581320121217
2 https://www.nytimes.com/2017/12/02/us/brian-ross-suspended-abc.html
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—both lead journalists at major news stations—following their respective reporting
blunders.

The objective of this paper is twofold. First, I seek to understand why reporting
errors are pervasive despite their costliness to firms. In particular, I consider how the
strategic and learning environment news firms face can induce them to commit errors
that are avoidable. My second objective is to study the dynamics of breaking news.
Namely, I ask when over the course of a news cycle firms are less credible and more
prone to erring.

To answer these questions, I present a dynamic model of breaking news. Firms
learn privately about a story by receiving confirmation that it is true, and choose
if and when to report it. Errors occur when firms fake, i.e., report despite lacking
confirmation. Because reports are public, firms also learn by observing the reporting
behavior of opponents. Regarding payoffs, firms are penalized for errors but
rewarded for market share, which depends on two qualities of the report. First, all
else equal, a firm who preempts its rivals enjoys greater market share. Second, market
share depends on the credibility of the firm’s report, which is the consumers’ belief
that the story was confirmed before being reported. Namely, a report is consumed
only to the extent that there is trust in the firm’s journalistic standards.

I establish existence and uniqueness of an equilibrium. Under this equilibrium,
the firm randomizes across faking times: fake reports are made as if they are being
generated by a non-homogenous Poisson process. The indifference condition that
supports this mixing implies an ordinary differential equation (ODE) on the arrival
rate of fake reports, and the equilibrium is characterized by a recursive system of
these ODEs, a fact that is central to the analysis.

In equilibrium, errors are responses to three features of the breaking news
environment: a lack of commitment by firms, competition, and observational
learning. Competition and observational learning not only exacerbate faking, they
induce dynamics in firm behavior. I begin by showing that errors can occur even in
the absence of competition: if the cost of error is relatively small, even a monopolist
will fake. Such errors are driven by a firm’s inability to commit to a reporting strategy.
Because consumers cannot detect faking, credibility is unaffected by deviations in the
firm’s reporting strategy. Firms are thus tempted to fake in order to capitalize on their
credibility after it has been established. I substantiate this intuition by showing that a
monopolist that could commit to a reporting strategy would never fake.

I then analyze a multi-firm setting, and find that both competition and
observational learning can exacerbate errors, and do so in different ways. Competition
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incentivizes speed by giving rise to a preemptive motive, which makes faking more
valuable. To restore indifference, credibility must fall to make faking less valuable,
which in equilibrium can only be consistent with more faking. Notably, this
preemptive motive is not merely an artifact of the firm’s payoff function, but rather
an equilibrium phenomenon. In particular, a preemptive motive arises in equilibrium
when the cost of error is relatively large, but when the cost of error is sufficiently
small, credibility endogenously adjusts in such a way that the preemptive motive
disappears. Meanwhile, observational learning causes existing errors to propagate
through the market. This is because, like consumers, firms cannot detect faking. Thus,
an erroneous report by one firm makes other firms more confident that the story is
true. This in turn implies a lower risk of error and a greater threat of preemption —
because it is more likely that another firm will privately confirm the story — both of
which yield the firm more inclined to fake.

Reporting dynamics take two different forms: gradual changes in the absence of a
new report and discrete changes in response to a new report. In the absence of a new
report, firms gradually become more truthful, i.e., less inclined to fake. Furthermore,
whenever there is a preemptive motive, firms become gradually more credible in the
eyes of consumers. In other words, consumers are more skeptical of quick reports, a
finding which conforms with documented concerns about hasty news reporting. The
reason for this gradual improvement in credibility lies in the firms incentives. The risk
of preemption introduces an endogenous cost to delay, and the firm must somehow
be compensated for this cost to ensure that its indifference condition is satisfied. This
is achieved by means of increasing credibility. That is, credibility increases to mitigate
the haste-inducing effects of preemption enough to yield the firm indifferent between
faking and waiting.

Meanwhile, a report by a rival firm causes a discrete change in a firm’s reporting
behavior. This can take the form of a copycat effect, in which one firm’s report causes an
instantaneous and persistent boost in faking. The copycat effect is always intensified
by observational learning, and is precisely the channel through which observational
learning propagates errors. When the copycat effect occurs, firms not only herd on
the decision to report, but also the timing of their reports. Furthermore, this herding
on report timing applies not only to errors, but valid stories as well. In addition to
anecdotal evidence of clustering in the timing of news errors 3, such herding has been

3 Examples include the reporting errors surrounding the Boston bombings (https://www.nytimes.
com/ 2013/04/18/business/media/fbi-criticizes-false-reports-of-a-bombing-arrest.html) and the 2000
US presidential election (https://www.nytimes.com/2000/11/08/us/the-2000-elections-the-media-a-
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documented in the empirical literature. Cagé, Hervé, and Viaud (2020) find that in
25% of cases, a news story is reported by a different media outlet within 4 minutes of
being published by the original news breaker. I provide a rationale for such herding
that is grounded in the strategic and learning environment news media face.

Finally, I consider comparative statics with respect to the cost of error, the speed of
learning, and the number of firms in the market. A higher cost of error improves
credibility by making faking less profitable, while faster learning curbs faking by
yielding firms more quickly pessimistic about the story’s truth. Meanwhile, firm entry
has a more nuanced effect on news quality. It can deteriorate credibility early on in
the news cycle by increasing competition, and thus the preemptive motive firms face.
However, this deterioration is mitigated — and potentially reversed — later on in
the news cycle by the entering firm’s positive effect on the market’s ability to learn
observationally that the story is false.

Related Literature This paper adds to the literature on games of preemption. In
the classic application to technology adoption (Reinganum (1981), Fudenberg and
Tirole (1985)) firms benefit from waiting for the cost of a technology to fall before
adoption, but benefit less from adoption if they are preempted. In these papers, as
is standard throughout the literature, the benefit of delay and cost of preemption are
exogenous. I depart from this by considering a setting where both this benefit and
cost are endogenous. I find that even when there is no exogenous benefit to delay,
it arises as an equilibrium phenomenon: delay is beneficial whenever preemption is
costly. Furthermore, firms may be endogenously rewarded for succeeding their rivals
in such a way that nullifies preemptive motives. In other words, even if there is an
exogenous cost of preemption, it can be completely mitigated in equilibrium.

I contribute more specifically to the literature on observational learning in
preemption games. In Hopenhayn and Squintani (2011) and Bobtcheff, Levy, and
Mariotti (2022), players learn about their opponents’ propensity to act by observing
how long they last without doing so. I instead consider a setting where players learn
observationally about a variable of common value, i.e., where there are learning
externalities. Such has been studied by Moscarini and Squintani (2010), Bobtcheff
et al. (2022), and Chen, Ishida, and Mukherjee (2023). Both Moscarini and Squintani
(2010) and Bobtcheff et al. (2022) study winner-takes-all research races with good
and bad news learning, respectively. Despite considering a winner-takes-all setting,
Moscarini and Squintani (2010) document herding in the timing of actions, wherein

flawed-call-adds-to-high-drama.html).
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players quit the race simultaneously. Chen et al. (2023) study a market entry game
that is not winner-takes-all, finding that entry by one firm can trigger another firm to
immediately follow suit.

Herding often arises in games with endogenously-timed decisions with learning
externalities but without payoff externalities (Chamley and Gale (1994), Grenadier
(1999), Murto and Välimäki (2011)). Chamley and Gale (1994) and Grenadier (1999)
study investment timing games, showing that endogenously-timed information
cascades, where one player’s action triggers others to immediately follow suit,
can occur. Meanwhile, Murto and Välimäki (2011) document dynamics that are
qualitatively highly similar to the equilibrium of this paper: players exit the game
with a time-varying hazard rate that rises when an opponent exits. That is, herding is
not immediate and deterministic but rather gradual and probabilistic. In both these
settings, gradual herding occurs because information cascades would make delay
strictly profitable. In Murto and Välimäki (2011), this is due to learning externalities:
observing how opponents react to an exit allows a player to make a more informed
exit decision. In my setting, it is due to the endogenous payoff function: deterministic
reports carry no credibility, and thus are not profitable. Furthermore, because the
model I present entails payoff externalities in addition to learning externalities,
reverse herding is also possible. I.e., firms sometimes fake with a lower probability
following an opponent report.

In application, this paper contributes to a literature on competition in news, as
surveyed by Gentzkow and Shapiro (2008). More recently, Chen and Suen (2023)
and Galperti and Trevino (2020) consider the effects of competition on news accuracy
when firms face costs or constraints to accuracy. Meanwhile, I consider a setting
where accuracy is not intrinsically costly but rather entails the strategic cost of being
preempted. Such is studied by papers on preemption in news (Lin (2014), Pant and
Trombetta (2019), Andreottola and de Moragas (2020)). As in this paper, Lin (2014)
models a setting where firms dynamically learn about a story and decide whether
and when to report it. I further incorporate two key elements of breaking news in
my model: credibility and observational learning. Together these two features drive
the qualitative features of equilibrium, including reporting dynamics and herding. I
contribute more generally to this literature by studying the effects of competition on
the dynamics of news. Namely, I show that competition can give rise to dynamics in
reporting behavior that are otherwise absent.

Finally, the notion of faking arises in other work. In Boleslavsky and Taylor (2024),
a single agent decides whether to fake a project or wait for a valid one, and a principal
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decides whether to approve it. They similarly find that the agent generates fakes
via a non-homogenous Poisson process, but that faking increases in the short run.
Their dynamics are driven by the principal’s increasing optimism that the agent is
ethical, and thus unwilling to fake, as time passes. The Poisson arrival of inaccurate
information is also a feature of Che and Hörner (2018) and entails spamming by
recommender systems.

The remainder of the paper is organized as follows. Section 2 presents the model.
In Section 3, I characterize the equilibrium and the role of commitment. In Section
4, I present the core economic implications of this equilibrium, which pertain to
competition and dynamics. I present comparative statics in Section 5. Section 6
concludes. All formal proofs are relegated to the Appendix.

2. A model of breaking news
There are N ≥ 1 firms, indexed by i, and one consumer. Time, which is continuous

and has an infinite horizon, is denoted by t ∈ [0,∞) . There exists some story, and the
time-invariant state θ ∈ {0, 1} denotes whether it is true (θ = 1) or false (θ = 0). At
t = 0, all players are endowed with a common prior p0 ≡ Pr(θ = 1) ∈ (0, 1).

Learning and reporting Firms learn about θ via one-sided Poisson signals: if θ = 1,
a private signal revealing that θ = 1 arrives to each firm at a Poisson rate λ > 0,
where the time of this arrival is independent across firms.4 Formally, letting si ∈
[0,∞] denote the time at which such a conclusive signal arrives to firm i, with si = ∞
denoting that a signal never arrives, si ∼ (1 − e−λsi) if θ = 1, and si = ∞ if θ = 0.
This learning process approximates a setting where firms pursue reliable sources that
can confirm a story, rather than seeking piecemeal evidence. In the case of a terrorist
attack, this could entail reaching out to contacts at the police department.

Firms choose whether and when to report the story. Specifically, at any t, a firm
can choose to make a report as long as they have not already done so. As the payoff
function will illustrate, the content of this report can be interpreted as an assertion
that the story is true, i.e., that θ = 1. A report history H is a partially ordered set of
pairs (i, ti), pairing each firm i who has reported with a report time ti, with elements
ordered according to the order in which the reports were made.5 Report histories are
public: all players observe the current report history.

4 An extension where firms have heterogeneous learning abilities is included in the Online Appendix.
5 Formally, elements are ordered according to relation ≿, where (i, ti) ≻ (j, tj) if ti > tj or ti = tj but

i reported first, and (i, ti) ∼ (j, tj) if the reports were made simultaneously.
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Payoffs A firm who never reports earns a payoff of 0. A firm who does report earns

knα− βI[θ = 0]. (1)

The first term (knα) is the market share (i.e., viewership or readership) that the firm
enjoys from reporting a story. It is the product of kn, a parameter capturing the role
of the firm’s order n, and α, the credibility of the report. More precisely, the index n
denotes that the firm was the nth to report: n ≡ |H|+ 1, where H denotes the current
history at the time of the report. I assume that k1 ≥ k2 ≥ ... ≥ kN ≥ 0, i.e., firms
who report earlier than their competitors earn greater market share, all else equal.
Meanwhile, credibility α denotes the consumer’s belief, at the time that the report is
made, that the firm has independently confirmed the state. Formally, it is the belief
that si ∈ [0, t], where t is the time of the report. In assuming a product form for
market share, I take the stance that consumers value accuracy in journalism, and thus
only consume news to the extent that they find it credible. 6 The second term of (1),
−βI[θ = 0], is the penalty of error: a firm who reports when θ = 0 incurs a penalty
β > 0. This captures the reputational harm a firm suffers from making a report that is
later uncovered to be false.

Equilibrium A Markov7 strategy F is a set of distributions Fp,n over future report
times for each belief p ≡ Pr(θ = 1) and order n of the next firm to report. 8

Specifically, the span of time the firm waits before reporting, conditional on not
receiving a conclusive signal, is distributed according to Fp,n ∈ ∆[0,∞] where ∞
denotes a lack of report. I restrict attention to symmetric equilibria, and thus omit the
firm’s index in much of the analysis.

I place some restrictions on F . First, I assume that for all (p, n), Fp,n is piecewise
twice differentiable and right-differentiable everywhere on [0,∞). This grants
analytical convenience and ensures that equilibrium objects are well-defined. Second,
I impose a selection criterion (SC): a firm immediately reports a story it knows is true.
This is stated as Definition 1.

Definition 1. F satisfies (SC) if F1,n(0) = 1 for all n ∈ {1, ..., N}.

This criterion rules out equilibria with periods of silence supported by pessimistic
6 A microfoundation for this formula for market share is presented in the Online Appendix.
7 In general, the Markov state should also include the identities of the remaining firms and beliefs

over their private signals. However, it is without loss to define the state in this way within the class of
strategy profiles that satisfy the below criteria, namely symmetry and (SC).

8 If multiple firms report at the same history H , one firm will be assigned order n, another n+ 1, etc.,
with their identities randomly determined according to a uniform distribution.
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off-path beliefs, i.e., beliefs that reports made during these gaps have little or no
credibility. In making this assumption, I am selecting an equilibrium rather than
imposing restrictions on firms’ behavior, namely, it is optimal for firms to abide by
(SC) in equilibrium. Conveniently, (SC) implies that fixing an n and starting belief p,
all remaining players hold the same common belief about the state after t time has
passed, assuming no new reports are made. This common belief is denoted by p(t),
and it follows from Bayes Rule that:

p(t) =
pe−λ(N−n+1)t

pe−λ(N−n+1)t + (1− p)
. (2)

Defining strategies in this way, i.e. with a separate distribution for each (p, n), is
convenient but introduces redundancy. Specifically, for any (p, n) and t > 0, Fp,n and
Fp(t),n “overlap”: both distributions specify the firm’s reporting behavior at (p(t +

s), n) for any s ≥ 0. Thus, I impose that the Fp,n must be mutually consistent9: at any
(p, n) on-path and t > 0,

Fp(t),n(s) =
Fp,n(t+ s)− Fp,n(t−)

1− Fp,n(t−)
for all s ≥ 0 whenever Fp,n(t) < 1, (3)

where Fp,n(t−) ≡ limτ↑t Fp,n(τ). Let F denote set of distributions F that satisfy the
above restrictions.

Before proceeding, I define two terms to describe reporting: faking and truth
telling. A report at time t is fake if it is made despite the firm lacking independent
confirmation, i.e., a signal si ̸∈ [0, t]. Meanwhile, a report that is made after the firm
has confirmation is truthful. Under the selection assumption (SC), strategies differ
only in their distributions over fake reports.

I seek a symmetric Markov perfect equilibrium of this game. This is a Markov
strategy F paired with beliefs α and p at each history such that F is sequentially
rational and the beliefs are consistent with Bayes Rule. The consistency of α with
Bayes Rule implies the following at all (p, n) on-path: 10

αn(p) =


λp

λp+bn(p)
if Fp,n(0) = 0

0 if Fp,n(0) > 0,
(4)

9 This condition is analogous to the closed-loop property specified in Fudenberg and Tirole (1985). I
adopt the term consistency condition from Laraki, Solan, and Vieille (2005), who define this condition for
a general class of continuous-time games of timing.

10 This formula is derived by applying Bayes Rule to a discrete-time approximation of the beliefs that
obtain under this game. This derivation is presented in the Online Appendix.
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where bn(p) ≡ F ′
p,n(0+), the right-derivative of Fp,n at 0, is the instantaneous arrival

rate of fake reports. This formula is intuitive. If Fp,n(0) > 0, there is a point mass
of fake reports at (p, n), and because conclusive signals are distributed continuously
over time, the instantaneous probability of a truthful report is zero. So, the consumer
and all competing firms are certain that a report made at (p, n) was fake, and thus
assign to it zero credibility. If there is not a point mass of fake reports at (p, n),
credibility is assessed by comparing the arrival rates of truthful reports (λp) to that
of fake reports (bn(p)), assigning higher credibility to reports made when the arrival
rate of fake reports is relatively low.

3. Equilibrium characterization
This section presents the equilibrium characterization. I begin by defining the

firm’s problem and establishing two properties that are instrumental to the analysis.
Then, as a stepping stone to the full model characterization, I consider the monopoly
case. This elucidates the forces at play even when competition is absent. Finally, I
characterize the equilibrium of the full model under competition.

3.1. The firm’s problem
I now present the firm’s problem. I begin by defining a useful object, the first report

distribution. Fix a report historyH and strategy profile F , and let p denote the common
belief and n the order of the next firm to report. Index the firms who have not yet
reported by i. The first report distribution Ψi(s) denotes the probability that player
i reported when or before s time has passed and was not preempted by any of the
remaining firms (i.e., i was the first to make a new report). This is given by:

Ψi(s) = p

∫ s

0

e−λr(N−n)
∏
j ̸=i

(1−F j
p,n(r))d(e

−λr(F i
p,n(r)−1))+(1−p)

∫ s

0

∏
j ̸=i

(1−F j
p,n(r))dF

i
p,n(r).

The firm’s value from playing strategy F i at (p, n) given each of its opponents plays
F j can then be written recursively as

Vp,n(F
i) =

∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨi(s) +

∑
j ̸=i

∫ ∞

0
Vpj(s),n+1(F

i)dΨj(s), (5)

where Vp,N+1 ≡ 0 and pj(s) denotes the common belief when s time has passed,
conditional on no new reports having been made, except for a report by j at time s.
The first integral of (5) is firm i’s expected payoff from reporting conditional on being
the first of the remaining firms to do so, and the second integral is conditional on
being preempted. Specifically, upon being preempted by j at time s, the state changes
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discretely from (p(s), n) to (pj(s), n + 1). Thus, the firm’s continuation value upon
being preempted is its value at this new state.

The firm’s problem at (p, n) is

max
F i∈F

Vp,n(F
i).

3.2. Properties of equilibrium

I now present two necessary conditions on a firm’s equilibrium strategy. First, I
show that there cannot exist any jumps (i.e., point masses) in the distribution of fake
reports. Second, whenever a firm is less-than-fully credible, it must satisfy certain
indifference conditions. Similar properties arise in other games with continuous
strategy spaces, where they result from competition.11 However, as I will illustrate
below, here they are instead driven by the endogenous nature of credibility and thus
hold even without competition.

First, let us consider the “no jumps” property (Lemma 1):

Lemma 1. In equilibrium, at any (p, n) on-path, Fp,n is continuous everywhere when p < 1.

To see why this holds, recall that a report made when there is a point mass of faking
yields zero credibility. Meanwhile, faking while also not being certain that the story
is true yields a strictly positive expected penalty β(1 − p). Thus, a firm’s value from
faking at such a time is strictly negative. The firm could then profitably deviate by
truth telling: this would preclude the firm from making an error, ensuring a weakly
positive payoff.

Now let us state the indifference property. To this end, let δs for s ∈ [0,∞] denote
the distribution that places full mass on faking when s time has passed. Specifically,
δ0 denotes immediate faking, while δ∞ denotes that the firm never fakes.

Lemma 2. In equilibrium if αn(p) < 1 and (p, n) is on-path, there exists an ε > 0 such that

Vp,n = Vp,n(δs) for all s ∈ [0, ε) ∪∞,

where Vp,n(δs) is the value from playing δs at (p, n) and F at (q,m) for all q and m > n.

Lemma 2 states that whenever αn(p) < 1, the firm must find a number of strategies
optimal. First, it must be optimal to fake immediately (play δ0). Second, it must be

11 These include war of attrition games (Hendricks, Weiss, and Wilson (1988)) and all-pay auctions
(Baye, Kovenock, and De Vries (1996)).
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optimal to be truthful for some sufficiently short span of time dt and then fake (play
δdt). Third, it must be optimal to never fake (play δ∞). I will now provide some insight
into the proof. Let us begin by considering why δdt must be optimal for dt ∈ [0, ε].
It follows from our regularity conditions on the firm’s strategy that αn(p(s)) must
be right-continuous in s. So, if αn(p) < 1, αn(p(s)) < 1 for all s sufficiently small.
Furthermore, whenever αn(p(s)) ∈ (0, 1), the firm is faking with a strictly positive
hazard rate. This means that the firm mixes between faking with delay [0, ε], implying
that all such pure strategies are optimal. Next, let us consider why never faking must
be optimal. If it were not, then a firm who has not received a conclusive signal must
fake with probability 1. To achieve this, the firm must sustain a sufficiently high
hazard rate of faking as t tends to ∞. But because the hazard rate of truthful reports
tends to zero as p falls, credibility would tend to zero, making faking suboptimal.

3.3. The monopoly characterization and the role of commitment

I now characterize the equilibrium under a monopoly, i.e., assuming N = 1. As
there is only one firm, I drop the n index from all functions and parameters.

Claim 1. Under a monopoly, for all p on-path: α(p) = min{β/k, 1}.12

Claim 1 states that the monopolist’s credibility is constant over time and not always
perfect. In particular, credibility is less-than-perfect whenever β/k < 1. That is, errors
can occur when the ex-post penalty of error is relatively low. In the remainder of this
subsection, I provide intuition for these properties and show that the monopolist’s
errors are driven by its inability to commit to a reporting strategy.

Let us first consider why credibility is constant. Lemma 2 established that
whenever α(p) < 1, the firm must be indifferent between faking immediately and
after some wait dt. By the martingale property of firm’s belief p, both of these
strategies yield the same expected penalty from error β(1− p). So, for both strategies
to be optimal, they must also yield the same expected market share kα. Thus,
credibility must be constant. It is noteworthy that this reasoning is predicated on
the fact that waiting is costless. Indeed, this is true under a monopoly: not only is
waiting intrinsically costless (there is no discounting), a monopolist does not incur
the strategic cost to waiting that preemption entails. As I show in Section 4, this
strategic cost of waiting is precisely what gives rises to dynamics in credibility under
competition.

12 A formal proof of this claim is omitted, as it is a special case of the N -period characterization that
follows (Proposition 1 and Proposition 2).
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Though a monopolist’s credibility is constant, its strategy is dynamic: the hazard
rate of faking (b) strictly decreases and tends to zero whenever credibility is less than
one. This follows from (4) and the firm’s one-sided Poisson learning process: the
absence of a report means that the firm has not received a conclusive signal, causing
the common belief to drift down. For credibility to remain constant, the hazard rate of
faking must decline as well.

Now, let us consider why truth-telling cannot be sustained when β/k < 1, and
why credibility is equal to β/k. Suppose by contradiction that β/k < 1 and the
firm is truthful. This implies full credibility, and thus that the market share (kα(p))
exceeds the penalty of error (β). So, it is strictly optimal to report, even if the story
is false. That is, the firm can profitably deviate by faking. We conclude that in
any equilibrium, the firm fakes with positive probability. To pin down the level
of credibility, we recall from Lemma 2 that a firm who fakes must be indifferent
between faking immediately and remaining truthful. Indeed, there is a unique value
of credibility that ensures indifference: β/k. There is some intuition behind this: the
bigger β/k is, the more costly errors are compared to market share for any α, and thus
the more costly faking is relative to truth telling. So, α must correspondingly increase
to maintain indifference.

In this model, I assume that consumers cannot detect faking and firms cannot
commit to a reporting strategy. Rather, a firm optimizes its strategy, for instance by
faking, taking the credibility function as given. I show that allowing the monopolist
to commit, it would always be truthful and thus never make errors. Formally, I
consider a modified version of the model where the firm announces, and commits
to, a reporting strategy before the consumer assesses credibility, presented formally in
the Appendix. Claim 2 states that in this setting, a monopolist never fakes.

Claim 2. Under commitment, the unique monopolist equilibrium is such that b(p) = 0 for all
p on-path.

One can immediately see that given the ability to commit, the firm would always
choose truth telling over its non-commitment equilibrium strategy, even when β < k.
By committing to truth telling, the firm is guaranteed a payoff of k if θ = 1, and 0 if
θ = 0. Meanwhile, under the no-commitment equilibrium, the firm will earn strictly
less when θ = 1, due to its strictly lower credibility, and earn 0 when θ = 0 because
the market share from reporting exactly offsets the penalty of error. Intuitively,
committing to truth telling is better for the firm because the enhanced credibility the
firm enjoys when the story is true exceeds any payoff it might enjoy from reporting
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a false story (which is zero in equilibrium). Indeed, truth telling is not only superior
to the non-commitment solution, it is the unique commitment solution. This result
illustrates that faking not only deteriorates the quality of information consumers
receive, it also harms firms. Despite this, faking occurs because firms cannot credibly
promise truthfulness to consumers.

3.4. Full model characterization

Now, I characterize the equilibrium of the full model (i.e., under N firms). I show
that any equilibrium is the solution to a recursive set of boundary value problems.

Let us begin by deriving the conditions under which the firm is truthful. This both
serves as a stepping stone to a full characterization and illustrates how competition
can deteriorate credibility and exacerbate faking. This result is stated as Proposition 1.

Proposition 1. In equilibrium, at any (p, n) on-path, αn(p) = 1 if and only if:

1. kn ≤ β

2. p ≤ p∗n ≡ min{ kn−β
kn

N−n+1
−β
, 1}.

Proposition 1 provides two conditions that are necessary and sufficient for truth
telling. The first condition alone, kn ≤ β, was sufficient for truth telling under a
monopoly (Claim 1). However, under competition, a second condition is required:
the common belief must lie below some threshold p∗n.

The need for this additional condition illustrates that truth telling is harder to
sustain under competition. This is due to the fact that under competition, truth-
telling entails a risk of being preempted. Assuming that being preempted is costly,
it follows immediately that truth-telling is harder to sustain. But we cannot take for
granted that being preempted is costly. It is, however, true that preemption is costly
conditional on being truthful in equilibrium. This is most obvious in a winner takes all
setting, where kn = 0 for all n > 1. In this case, the costliness of being preempted
is an artifact of the parameters, as a preempted firm can earn at best zero payoff.
But in general, the decreasing nature of kn alone does not imply that preemption is
costly: improved credibility for succeeding firms could endogenously counteract the
decay in kn, making preemption costless or even valuable. Indeed, I will show in the
next section that under certain parameters, precisely such a phenomenon occurs in
equilibrium. But conditional on a firm being truthful, this cannot happen: truthfulness
implies full credibility, leaving no room for a succeeding firm to improve on it.

Let us now consider why under competition, truthtelling is only possible when
firms are sufficiently pessimistic about the story. This can be explained by the fact that
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faking and truth telling each pose a different kind of risk to the firm: while truth telling
entails the risk of being preempted, faking entails the risk of making an error. Both of
these depend on the belief p about the state: higher p implies a lower probability of
error and a higher probability of being preempted. The former is immediate, and the
latter is due to the fact that preemption is more likely when the story is true. Namely,
conditional on the story being true, an opponent reports not just because it is faking,
but also because it has received confirmation. Because a lower risk of error and higher
risk of preemption both make faking relatively more profitable, truth telling is harder
to sustain when p is high.

It remains to characterize the firm’s behavior when truth telling does not hold. To
this end, I obtain a key result: when the firm fakes, credibility must satisfy an ODE
and limit condition.

Proposition 2. In equilibrium, at all (p, n) on-path where kn ≥ β or p > p∗n, the following
ODE must be satisfied:

α′
n(p) = − 1

kn(1− p)αn(p)

N − n

N − n+ 1
[knαn(p)− Vp̃,n+1 − β(1− αn(p))(1− p)], (ODE)

where p̃ ≡ αn(p) + (1− αn(p))p.

Furthermore, limp→0+ αn(p) = β/kn if kn > β and limp→p∗n+ αn(p) = 1 if kn ≤ β.

The proof for Proposition 2 follows from the indifference condition established in
Lemma 2. When credibility is less than 1, there exists an ε > 0 such that the strategies
δ∆ yield the same payoff for all ∆ ∈ (0, ε]. This implies

d

d∆+
Vp,n(δ∆)

∣∣∣∣
∆=0

= 0. (6)

It follows from (5) that

Vp,n(δ∆) =

∫ ∆

0
knαn(p(s))dΨ

i(s) + (N − n)

∫ ∆

0
Vp−i(s),n+1dΨ

−i(s)+

(1−
∑
j

lim
s→∆−

Ψj(s))[knαn(p(∆))− β(1− p(∆))],

where Ψ is the first-report distribution associated with the strategy profile in which i
plays δ∞ and all j ̸= i play the equilibrium strategy Fp,n. Differentiating, we obtain

lim
∆→0+

d

d∆
Vp,n(δ∆) = [

dp

dt
(knα

′
n(p))−

λp(N − n)

αn(p)
(Vp̃,n − Vp̃,n+1)]. (7)
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Setting the right-hand side to zero, in accordance with (6), yields (ODE). Equation (7)
illustrates that waiting to fake, rather than faking immediately, has two consequences
for the firm’s payoff. The first is that αn, and thus the market share from reporting,
may change. This rate of change is dp

dt (knα
′
n(p)). The second consequence is that the

firm risks being preempted: this happens at a Poisson rate λp(N−n)
αn(p)

, in which case its
expected payoff changes by Vp̃,n − Vp̃,n+1. I call this decrease in value the regret from
preemption.

Let us examine the rate and regret of preemption more closely. As one might
expect, the rate of preemption is increasing in the number of rival firms remaining
(N − n) and the expected rate at which these rivals can confirm the story (λp). It is
also decreasing in credibility: less credible firms are more likely to fake, and thus more
likely to preempt. Meanwhile, the regret of preemption is the difference between two
values, Vp̃,n+1 and Vp̃,n. Vp̃,n+1 denotes the firm’s continuation value in the event that it
is preempted at (p, n). This value is taken at (p̃, n+1) because preemption affects both
the firms order and the common belief: while the common belief was p prior to the
rival firm’s report, it increases to p̃ ≡ αn(p) + (1− αn(p))p in its immediate aftermath.
This expression for p̃ demonstrates that a rival firm’s report means one of two things:
either the report was triggered by a conclusive signal, in which case the new belief
should be 1, or it was fake, in which case the new report offers no new information
and the belief remains p. Since faking is unobservable, the new common belief p̃ is an
average of these two conditional beliefs, where the weight given to the report being
informed is its credibility. Meanwhile, Vp̃,n denotes the continuation value conditional
on not being preempted. This value is not assessed at the belief prior to preemption
p, but rather the posterior p̃. In this sense, Vp̃,n+1 − Vp̃,n denotes firm’s regret from not
having reported after being preempted.

In addition to (ODE), Proposition 2 establishes that one of two limit conditions
must hold. Which condition holds depends on the model parameters, and like (ODE),
these conditions result from the firm’s indifference condition. First consider the case
where kn ≤ β. It follows from Proposition 1 that αn(p) = 1 whenever p ≤ p∗n. Thus,
αn(p) limits to 1 as the belief approaches p∗n. Otherwise, there would be an upward
discontinuity at p∗n, meaning that at beliefs close to p∗n, the firm could profitably
deviate by waiting until p∗n to fake, causing a failure of indifference. When kn > β, the
firm never truth tells, so by Lemma 2 it must always be indifferent between faking
and truth telling. As p approaches zero, a firm who fakes does so being nearly certain
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that it will incur penalty β. Thus, the payoff from faking limits to the following:

lim
p→0+

Vp,n(δ0) = kn lim
p→0+

αn(p)− β.

Meanwhile, the value from truth-telling limits to zero, as it becomes certain that the
firm never receives a conclusive signal and thus never reports. So, the limit condition
in this case, limp→0+ αn(p) = β/kn, ensures that indifference holds in the limit.

To take stock, Proposition 1 and Proposition 2 provide two necessary conditions
on equilibrium credibility. They pin down the region in which truth telling occurs
(Proposition 1), and show that otherwise, credibility must satisfy a recursive
boundary value problem (Proposition 2). One can show that these two conditions are
sufficient for an equilibrium as well, provided that the firm’s strategy is consistent
with this credibility function. Specifically, I show that if credibility satisfies these
conditions, the firm cannot profitably deviate from the strategy that is consistent with
this credibility. On the region where credibiilty is perfect, a deviation would consist of
faking. Proposition 1 establishes that such a strategy cannot be played in equilibrium,
that is, the firm could profitably deviate by truth telling even when their opponents
are faking (the risk of being preempted is higher) and credibility is less-than-perfect
(the benefit of reporting is lower). Such a strategy thus cannot be more profitable
than truth telling when the firm’s opponents are not faking, and credibility is perfect.
On the region where αn(p) < 1, the firm’s strategy involves mixing between faking
and truth telling. This too must be optimal, because both (ODE) and the boundary
conditions guarantee it.

Thus, the equilibrium is fully characterized by the solution to a recursive set
of boundary value problems. While I do not derive a closed-form solution to this
problem, I use the Picard-Lindelof theorem to establish existence and uniqueness.
This result is stated as Theorem 1.

Theorem 1. There is a unique equilibrium, where uniqueness applies at (p, n) on-path.

4. Dynamics and herding
With the above characterization in hand, I study dynamics. I show that credibility

gradually improves over time whenever preemption is costly, with discrete changes
triggered by the report of a rival firm. Under certain conditions, in particular when
observational learning is sufficiently strong, firms herd on their opponents’ decisions
to report as well as the timing of these reports. This is due to a copycat effect, wherein
one report causes a surge in faking by others.
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The nature of equilibrium dynamics hinges on whether the last firm fakes. Thus,
I will discuss two separate cases: the first where the last firm is truthful (kN ≤ β)
and the second where the last firm fakes with positive probability (kN > β). I show
that firms face a preemptive motive when the last firm is truthful, but this motive
endogenously disappears otherwise. I begin by showing that credibility strictly
improves over time when β > kN , as long as no new reports are made.

Proposition 3. If β > kN , d
dtαn(p(t)) > 0 and d

dtbn(p(t)) < 0 whenever αn(p(t)) < 1, for
all (p, n) on-path.

The broad implication of this result is that while credibility is constant under a
monopoly, competition can give rise to dynamics. To understand why, it can be
helpful to observe the following: as long as αn(p(t)) has not reached its upper
bound of 1, it strictly increases if and only if there is a positive regret to preemption.
Formally, this follows from (ODE). It is especially clear when we write (ODE) in the
following form:

d

dt
αn(p(t)) =

λp(t)(N − n)

αn(p(t))kn
[Vp̃,n − Vp̃,n+1]. (8)

There is intuition behind this result. Whenever the firm is less-than-fully credible,
it must be indifferent between faking immediately and waiting some length of time
before doing so. However, if credibility remained constant, reporting immediately
would be strictly better—it would allow the firm to avoid being preempted while
suffering no harm to its credibility. To restore indifference, the firm must somehow be
compensated for waiting. This can only be achieved by means of increasing credibility.
That is, credibility must increase to mitigate the haste-inducing effects of preemption.

I have argued that credibility must increase when there is a positive regret from
preemption, but as discussed above, this is not necessarily true even when there are
multiple firms in the market. However, it is indeed true that preemption is costly
when β > kN , i.e. when β is high enough to ensure the last firm is truthful. The
proof requires a backwards induction argument, but its core reasoning is most easily
illustrated in a duopoly setting (N = 2) where β ∈ (k2, k1). In this case, a firm fakes
with a positive hazard rate as long as nobody has reported yet, but switches to truth
telling as soon as its opponent makes a report. Proposition 3 asserts that the credibility
of the first report α1 must strictly increase over time. To see why, suppose instead
that α1 were constant, as in the monopoly case.13 Since k1α1(p(t)) must limit to β

13 This argument is purely illustrative; it does not rule out the possibility that α1(p(t)) is increasing in
t, nor that the function is only locally non-increasing. A formal treatment is presented in the proof.
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(Proposition 3), it follows that k1α1(p(t)) = β for all t. This implies a failure of the
firm’s indifference condition: the market share from reporting first is so high that
faking is strictly optimal. Specifically, if the story is false both faking and truth telling
yield 0 payoff, but if the story is true the firm is ensured a payoff of β by faking but
by truth telling risks being preempted and only earning k2. So, the market share of
the first firm must instead be strictly less than β and approach it from below. This
restores indifference because it increases the value of truth-telling in two ways: (1) the
lower market share from reporting first lowers the regret of being preempted and (2)
increasing α provides an additional incentive to wait.

Proposition 3 also states that bn(p(t)) is decreasing in t, an immediate corollary of
the increasing nature of credibility. While this same result obtains in the monopoly
case, the strictly increasing nature of credibility implies that bn(p(t)) decays more
quickly than under the monopoly equilibrium. I.e., the firm’s preemptive motive also
gives rise to more extreme dynamics in faking.

So far, we have restricted attention to the case where kN < β. One can show that if
this does not hold, preemption becomes costless in equilibrium and the dynamics in
αn disappear. I formalize this as Proposition 4.

Proposition 4. If kN ≥ β, αn(p) = β/kn for all (p, n).

This result states that when kN ≥ β, credibility is constant at a level where the market
share knαn(p) is not affected by the firm’s order. That is, firms enjoy higher credibility
from reporting after their opponents, which mitigates the decline in kn in such a way
that makes preemption costless. To understand why, it is again helpful to consider the
duopoly case, but this time assuming that β < k2 < k1. In this case, the market share
for the second reporter, k2α2(p), equals β no matter when that report is made. Now
let us consider the first reporter. Again, the market share of the first reporter must
limit to β, but cannot limit to β from below. If it did, a firm could profitably deviate
by being truthful: being preempted would benefit the firm, as it would yield a higher
market share β. Instead, the market share of the first firm, k1α1(p), must always equal
β, which is exactly the market share for the second firm.

Proposition 3 and Proposition 4 also have implications for the effects of
competition: they show that competition exacerbates faking. To formalize this,
let bn denote equilibrium faking under a monopoly (N = 1) with maximal market
share kn. This denotes equilibrium faking under a counterfactual where competition
is absent. Corollary 1 states that under any state (p, n), faking is higher than under
the competition-free counterfactual.
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Corollary 1. For any (p, n), bn(p) ≥ bn(p), where the inequality holds strictly whenever
bn(p) > 0 and β ∈ (kN , kn).

To see why, note that Proposition 2 establishes that under competition, credibility
limits to the value that obtains under a monopoly as p→ 0. Meanwhile, Proposition 3
and Proposition 4 establish that credibility is decreasing in p. This implies that
credibility under competition lies below the monopoly value for all p, and thus,
faking lies above the monopoly value.

Let us take stock of these results. Proposition 3 asserts that under certain
conditions, news reports that are made with greater delay for research are more
trustworthy to consumers. I.e., all else equal, consumers have greater trust in a
firm’s journalistic standards when a report is not made quickly. In this sense, this
model provides a justification for consumer distrust of hasty reporting that originates
from the firm’s preemptive motive. Meanwhile, Proposition 4 establishes a notable
feature of equilibrium: competition alone does not imply preemptive motives. Even
though reporting first yields a higher market share all else equal, payoffs sometimes
endogenously adjust in such a way that makes preemption costless. Because the
firm’s continuation value is determined inductively, whether a preemptive motive
obtains in equilibrium hinges on the incentives of the last firm.

Proposition 3 and Proposition 4 describe the dynamics of reporting conditional on
no new reports being made. For a more complete picture of equilibrium dynamics,
it is helpful to plot simulations of credibility and faking over the course of time.
Figure 1 does this for the case when kN < β. By Proposition 3, credibility is increasing
and faking decreasing as long as no new reports are made. However, new reports
trigger discrete changes in credibility and faking, and these jumps are non-monotonic.
Dynamics are qualitatively different when kN ≥ β as illustrated by Figure 2. By
Proposition 4, credibility is flat, with new reports triggering upwards jumps. But even
in this case, a new report triggers an increase in faking.

Both these simulations illustrate the copycat effect, in which a new report triggers
an increase in faking. I define it formally below.

Definition 2. A report at (p, n) triggers the copycat effect if bn+1(p̃)− bn(p) > 0.

Let us consider what forces are responsible for this effect. To this end, recall that a
new report affects two changes to the state. First, it increments the order of the next
firm to report from n to n+1. Second, firms learn observationally from the report, and
thus the common belief increases from p to p̃. The following decomposition isolates
the respective impacts of these two changes:
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Figure 1: Simulation of credibility (α) and the hazard rate of faking (b), over the course of a
game when kN < β. Upwards jumps in b illustrate the copycat effect.

bn+1(p̃)− bn(p) = [bn+1(p)− bn(p)]︸ ︷︷ ︸
change in order

+ [bn+1(p̃)− bn+1(p)]︸ ︷︷ ︸
change in belief

.

In equilibrium, the change in order has an ambiguous effect on faking, i.e., bn+1(p) −
bn(p) may be positive or negative. This is because a report can cause either an increase
or decrease in the remaining firms’ preemptive motive depending on the curvature
of the kn. To illustrate this, it is helpful to study two contrasting examples. First,
consider a three firm setting (N = 3) where k1 > k2 = k3 and β ∈ (k3, k1). In this
case, firms have a preemptive motive as long as nobody has yet reported, but this
motive disappears once at least one firm has reported since the firm’s order will no
longer impact its market share. So here, a change in order reduces the incentive to
fake: b2(p) − b1(p) < 0. Next, let us consider the same example but now assuming
that k1 = k2 > k3. In this case, all else equal, the first and second firm to report enjoy
the same market share. So, firms face no cost to preemption as long as nobody has
reported yet. Instead, this cost appears as soon as the first report is made. So in this
case, a change in order increases the incentive to fake: b2(p)− b1(p) > 0.

Unlike the change in order, observational learning always causes faking to increase.
This is stated as Corollary 2.

Corollary 2. For any n < N , bn+1(p̃) − bn+1(p) ≥ 0, where the inequality holds strictly
whenever bn+1(p̃) > 0.

This is an immediate corollary of Proposition 3 and Proposition 4, which establish that
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Figure 2: Simulation of credibility (α) and the hazard rate of faking (b), over the course of a
game when kN > β.

whenever a firm fakes, bn(p(t)) is decreasing in t. Because the common belief p(t) is
decreasing in t, this means bn(p) is increasing in p. That is, an increase in the common
belief implies an increase in faking. There is intuition for this as well: all else equal, a
higher p implies a greater incentive to fake because this corresponds to a lower risk of
error and higher risk of preemption, which both make faking relatively more valuable.

While observational learning will always cause faking to increase, the ambiguous
effect of order means that the net effect is also ambiguous, i.e., a report does not
always trigger the copycat effect. However, the copycat effect always occurs when
the common belief is sufficiently low. I formalize this as Corollary 3.

Corollary 3. Suppose n < N and kn+1 > β. There exists a p > 0 such that for all p < p,
bn+1(p̃)− bn(p) > 0.

This result is driven by the fact that the magnitude of observational learning, p̃− p, is
decreasing in the starting belief p. This is true for two reasons. First, a high pre-report
belief p leaves little room for the belief to increase further. Second, reports made when
p is high are less credible, and thus have less impact on the common belief. This
negative correlation between the common belief and observational learning means
that the positive effect of observational learning on faking is salient when p is low.
Indeed, when p is sufficiently small, observational learning is substantial enough to
give rise to the copycat effect.

The copycat effect has important implications for the behavior of firms: in the
aftermath of an opponent report, a firm may be more likely to report not because
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they have also verified the story, but because they are faking. Meanwhile, in the
absence of a competitor report, faking declines. That is, firms herd on the decision
to report a story. Furthermore, because under the copycat effect firm faking increases
immediately and then starts its gradual decline, a new report is most likely in the
immediate aftermath of an opponent report. That is, firms also heard on the timing
of reports, both correct and erroneous ones. Such herding in the timing of news is
empirically documented by Cagé et al. (2020), and the copycat effect demonstrates
that the interaction between strategic motives and social learning can explain such
behavior.

5. Comparative statics
I now consider how the equilibrium changes with the cost of error (β), the rate of

learning (λ) and the number of firms (N ). I discuss each parameter in turn.

5.1. Cost of error (β)
Fixing a state (p, n), a firm is more credible and fakes less under a high β. This

result is stated as Comparative Static 1.

Comparative Static 1. In equilibrium, for any (p, n), αn(p) is weakly increasing in β and
bn(p) is weakly decreasing in β, and strictly so whenever αn(p) < 1.

This results from the firm’s equilibrium incentives: a higher β makes faking more
costly for the firm. Thus, increasing β will either induce the firm to resort to truth
telling, or to restore indifference, require that it is compensated for this costlier faking
with higher credibility. In either case, this implies lower credibility and higher faking.
This result suggests that costlier errors can improve the quality of information news
firms provide. Perhaps more surprisingly, a higher β can be beneficial for firms as
well. Indeed, in a winner-takes-all setting, firms’ ex-ante value in equilibrium is
increasing in β. This is stated as Corollary 4.

Corollary 4. In a winner-takes-all setting, a firm’s ex-ante value, Vp0,1, is increasing in β and
strictly so whenever firms fake with positive probability.

This result is connected to firms’ inability to commit to truthful reporting. As
discussed in Section 3.3, a monopolist who is able to commit to a reporting strategy
will choose truth telling over any strategy that involves faking because truth telling
ensures perfect credibility. A high β has a similar effect: it serves as a commitment
device, curbing firm faking and thus improving credibility. Furthermore, this
improvement in credibility is enough to outweigh the increased cost of error.
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5.2. Speed of learning (λ)

I now consider the effect of an increase in the rate of learning (λ) on the equilibrium.
A higher λ has no effect on credibility, and increases faking, under any state (p, n).
However, increasing λ also speeds up the decay in the common belief, and thus
credibility improves as a function of time.

Comparative Static 2. In equilibrium, for any (p, n), αn(p) is constant in λ, while bn(p) is
weakly increasing in λ. Meanwhile, αn(p(t)) is increasing in λ for any (p, n) and t > 0.

λ does not affect αn(p) because it does not enter the boundary value problem which
dictates the firm’s credibility. However, an increase in λ does cause an increase in
the arrival rate of valid reports (those triggered by the arrival of a conclusive signal).
Thus faking, bn(p), increases to maintain a constant level of credibility. While λ does
not affect αn(p), changes in λ will affect the common belief p(t): under a high λ,
firms learn about the state more quickly and thus will hold a lower belief at any
time t > 0 condition on not receiving a conclusive signal. This lower belief implies
a higher expected cost of erring, which makes faking more costly. This must be
counterbalanced by higher credibility at every t > 0 to ensure indifference holds.

5.3. Number of firms (N )

Finally, I study the effect of a change in the number of firms. This exercise sheds
light on how firm entry can affect the quality of news. Comparative Static 3 establishes
that firm entry deteriorates the credibility of the first report, and increases faking,
but only if the report is made sufficiently early. In fact, market entry can improve
credibility for reports made with sufficient delay.

Comparative Static 3. In equilibrium, for any N , there exists a t > 0 such that α1(p0(t)) is
weakly decreasing in N , and strictly so if α1(p0) < 1, for all t < t.

This result can be understood by noting that an additional firm affects two separate
changes to the market. First, each firm faces more competition, and thus greater
preemption risk. Second, the market has a higher ability to learn observationally, and
thus the common belief decays more quickly in the absence of a report. The effect of
an additional firm can be understood as the combination of these two countervailing
forces: higher competition, which deteriorates credibility, and a greater ability to
learn, which per Comparative Static 2 improves credibility. An increase in learning
ability has a negligible impact on credibility for early reports because firms learn
gradually, and it thus takes time for differences in learning to substantially impact

23



beliefs. However, an increase in competition will have a non-negligible impact on
credibility even when t = 0. Thus, the impact of higher competition dominates when
t is small, resulting in a net reduction in credibility. However, as time passes and the
effect of faster learning grows, a reversal may take place, i.e., credibility may improve.

6. Conclusion
This paper presents a dynamic model of breaking news that accounts for the

strategic and learning environment in the market for news. Firms face payoff and
learning externalities, which exacerbate reporting errors and introduce dynamics in
reporting behavior in distinct ways. The preemptive motive firms encounter causes
errors by incentivizing hasty reporting and is responsible for lower news credibility
that is gradually improving over time. Meanwhile, observational learning causes
existing errors to propagate through the market via a copycat effect, where a report
by one firm induces an immediate and persistent surge in faking by other firms,
behavior that is consistent with clustering in the timing of news reporting. Crucially,
this herding is not only driven by observational learning, but also by its interaction
with the preemptive motive that firms face. Thus, more generally, this paper sheds
light on how payoff and learning externalities can interact in a game of timing. To
understand this interaction in more general payoff and learning environments is a
topic that warrants further investigation. Beyond this, this paper illustrates how the
core tradeoff in games of preemption—between the strategic benefit of preemption
and the non-strategic benefit of delay—can arise as an equilibrium phenomenon in
settings with endogenous payoff functions. Understanding more generally when
such phenomena may occur in games of timing is another avenue of future work.
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Appendix
Proof of Lemma 1. Let us begin by showing that at all (p, n) on-path such that p < 1,
Fp,n is continuous at 0. To this end, suppose by contradiction that Fp,n is discontinuous
at 0. By the right-continuity of Fp,n, this implies that Fp,n(0) > 0. Because (p, n) is on
path, by (4), αn(p) = 0. Furthermore, it follows by definition that pi(0) = p. Recalling
that we are restricting attention to symmetric equilibria, let Ψ denote the first-report
distribution at (p, n) under the equilibrium strategy profile Fp,n. Because Fp,n(0) > 0,
Ψi(0) > 0 for all i who have not yet reported.

Now define the following deviation F̂p,n. This strategy is identical to Fp,n, except
that all the mass that Fp,n places on 0 is shifted to ∞:

F̂p,n(s) =

Fp,n(s)− Fp,n(0) if s <∞

1 if s = ∞.

Now, fix some i who has not yet reported. Let Ψ̂ denote the first-report distribution
at (p, n) under the strategy profile where i plays F̂p,n and all j ̸= i play Fp,n. By
definition, for all s ≥ 0, Ψ̂i(s) = Ψi(s)−Ψi(0). Then,∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨ̂i(s) >

∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨi(s).

Again by definition, for all s ≥ 0, Ψ̂−i(s) = Ψ−i(s) +X(s), where

X(s) ≡ Ψi(0)[p

∫ s

0
(1− Fp,n)

N−n−1(1− F̂p,n(r))e
−λr(N−n)d(e−λr(Fp,n(r)− 1))

+(1− p)

∫ s

0
(1− Fp,n(r))

N−n−1(1− F̂p,n(r))dFp,n(r)].

Then, we have∫ ∞

0
Vp−i(s),n+1dΨ̂

−i(s)−
∫ ∞

0
Vp−i(s),n+1dΨ

−i(s) =

∫ ∞

0
Vp−i(s),n+1dX(s) ≥ 0.

where the final inequality follows from X(s) increasing in s and Vp−i(s),n+1 ≥
Vp−i(s),n+1(δ∞) ≥ 0. Combining the above two inequalities we have

Vp,n(F̂p,n) =

∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨ̂i(s) + (N − n)

∫ ∞

0
Vp−i(s),n+1dΨ̂

−i(s)

>

∫ ∞

0
[knαn(p(s))− β(1− pi(s))]dΨi(s) + (N − n)

∫ ∞

0
Vp−i(s),n+1dΨ

−i(s) = Vp,n(Fp,n).
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Thus, i can profitably deviate at (p, n). Contradiction.

It remains to show that continuity applies at all t, for all (p, n) on-path such that
p < 1. Suppose by contradiction that it is not. Let t denote the time at which there is
a discontinuity. Because Fp,n is increasing and right-differentiable limr→t− Fp,n(r) <

Fp,n(t). By (3), Fp(t),n(0) > 0. Thus, Fp(t),n is discontinuous at 0. Contradiction. □

I now state two technical lemmas (Lemma 3 and Lemma 4), the proofs of which are
presented in the Online Appendix. Note that the proof of Lemma 4 relies on Lemma 2.

Lemma 3. For any (p, n) on-path, αn(p) ≥ αn(p) ≡ min{β(1− p)/kn, 1} and F ′
p,n(0+) ≤

f ≡ λp( 1
αn(p)

− 1).

Lemma 4. αn(p(s)) is continuous in s for all (p, n) on path such that s > 0.

Proof of Lemma 2. Assume that αn(p) < 1. By the right continuity and piecewise
twice-differentiability of Fp,n, and by (4), it follows that αn(p(s)) is right-continuous
in s. Thus, there exists an ε > 0 and d > 0 such that αn(p(s)) < 1− d for all s ∈ [0, ε).

I claim that for all s ∈ [0, ε), Vp,n = Vp,n(δs). Suppose by contradiction that for some
s̃ ∈ [0, ε),Vp,n(δs̃) < Vp,n. I show that Vp,n(δs) is right-continuous in s. By definition,

Vp,n(δs) =

∫ s

0
knαn(p(r))dΨ

i(r) + (N − n)

∫ s

0
Vpi(r),ndΨ

−i(r)+

(1−
∑
j

Ψj(s))[knαn(p(s))− β(1− p(s))],

where Ψj(s) is the first-report distribution that arises when i plays δ∞ and all j ̸= i

play Fp,n. The right-continuity of Vp,n(δs) with respect to s then follows from the
absolute continuity of Ψj (which follows from Lemma 1), and the right-continuity of
αn(p(s)) with respect to s, which follows from the right-continuity of Fp,n(s).

Given the right continuity of Vp,n(δs), there exists some ε′ ∈ (0, ε−s̃) and x > 0 such
that Vp,n − Vp,n(δr) > x for all r ∈ [s̃, s̃+ ε′]. I claim there exists some s∗ ∈ [0,∞] such
that Vp,n = Vp,n(δs∗). Suppose by contradiction that Vp,n > Vp,n(δs) for all s ∈ [0,∞]. It
follows from (5) that

Vp,n(F ) =

∫ ∞

0
Vp,n(δs)dFp,n(s) + (1− lim

s→∞
Fp,n)Vp,n(δ∞) < Vp,n,

where the strict inequality follows from the assumption that Vp,n > Vp,n(δs) for all s.
Thus, F cannot be an equilibrium strategy. Contradiction.
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Now, define the following deviation F̃ . This strategy is identical to F , except F̃p,n

shifts all the mass from [s, s+ ε′] to s∗. Specifically, when s∗ < s̃:

F̃p,n(t) =


Fp,n(t) + Fp,n(s̃+ ε)− Fp,n(s̃) if t ∈ [s∗, s̃]

Fp,n(s̃+ ε) if t ∈ (s̃, s̃+ ε′]

Fp,n(t) otherwise.

Meanwhile, when s∗ > s̃+ ε′:

F̃p,n(t) =


Fp,n(s) if t ∈ [s̃, s̃+ ε]

Fp,n(t)− [Fp,n(s̃+ ε′)− Fp,n(s̃)] if t ∈ (s̃+ ε′, s∗)

Fp,n(t) otherwise.

Now, by definition:

Vp,n(F̃ ) = Vp,n(F ) +

∫ s̃+ε′

s̃
[Vp,n(δs∗)− Vp,n](δr)dFp,n(r) ≥ Vp,n(F ) + xε′ > Vp,n(Fp,n).

Thus, F̃ is a profitable deviation. Contradiction.

It remains to show that Vp,n = Vp,n(δ∞). Suppose by contradiction that
Vp,n > Vp,n(δ∞). It follows that limt→∞ Fp,n(t) = 0, because otherwise, the firm
could profitably deviate by placing no mass on t = ∞. Thus, for some s ∈ (0,∞],
limt→s− bn(p(t)) = ∞ ⇒ limt→s− αn(p(t)) = 0, which contradicts Lemma 3. □

Proof of Proposition 1. I begin by showing that αn(p) = 1 whenever kn < β and
p ≤ p∗n ≡ kn−β

kn/n−β . To this end, fix an n, and suppose that kn < β. I first show that for
all q < β−kn

β , αn(q) = 1. For all such q

Vq,n(δ0) = knαn(q)− β(1− q) ≤ kn − β(1− q) < kn − β(1− β − kn
β

) = 0.

Since Vq,n ≥ Vq,n(δ∞) ≥ 0, it follows that Vq,n > Vq,n(δ0). Thus, by Lemma 2, αn(q) = 1.
Now, let q∗n ≡ sup{p|αn(q) = 1 for all q < p}. It follows from the above that q∗n ≥ β−kn

β .
I claim that q∗n ≤ p∗n. Suppose by contradiction that q∗n < p∗n. By Lemma 4, there exists
an ε > 0 such that for all p ∈ (q∗n, q

∗
n + ε), αn(p) < 1, and thus Vp,n = Vp,n(δ0) =

knαn(p)− β(1− p). So, limp→q∗n+ Vp,n = kn − β(1− q∗n). By definition of V , because by
Lemma 1 Fp,n is absolutely continuous, it follows that Vp,n(δ∞) is as well, and thus:
limp→q∗n+ Vp,n(δ∞) = Vq∗n,n(δ∞) = knq∗n

n . In order for δ∞ to not serve as a profitable
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deviation for p ∈ (q∗n, q
∗
n + ε), it must be that for all such p, Vp,n(δ0) ≥ Vp,n(δ∞). Taking

a limit we obtain that limp→q∗n+ Vp,n(δ0) ≥ limp→q∗n+ Vp,n(δ∞). Substituting the limits
for Vp,n and Vp,n(δ∞) above, we obtain that knq∗n

n ≤ kn − β(1 − q∗n). However, kn ≤ β

and q∗n < p implies that knq∗

n > kn − β(1− q∗). Contradiction.

Next, we show that αn(p) < 1 whenever β ≤ kn or p > p∗n. To this end, assume
β ≤ kn or p > p∗n. Assume by contradiction that αn(p) = 1. Also assume by induction
that if n < N , then the statement holds for n + 1. First, consider the case where
αn(q) = 1 for all q < p. By (4), this implies that F ′

q,n(0) = 0 for all q < p. Furthermore,
by Lemma 1, this implies that Fp,n(s) = 0 for all s > 0, i.e., Fp,n = δ∞. However,
Vp,n(δ0) = kn−β(1−p) > knp

n = Vp,n(δ∞), where the strict inequality follows from the
assumption that either β ≤ kn or p > p∗n. Contradiction.

Next, consider the case where αn(q) < 1 for some q < p. By Lemma 4, for all ε > 0

sufficiently small, there exists p < p and s > 0 such that αn(p) ∈ (1− ε, 1) and αn(q) is
strictly increasing on [p(s), p]. By Lemma 2, there exists some ∆ ∈ (0, s) such that

Vp,n(δ∆) = Vp,n(δ0). (9)

By definition,

Vp,n(δ∆) =

∫ ∆

0
knαn(p(s))dΨ

i(s) + (N − n)

∫ ∆

0
Vpi(s),n+1dΨ

−i(s)+

(1−
∑
j

Ψj(∆))[knαn(p(∆))− β(1− p(∆))],

where Ψ is the first-report distribution associated with the strategy profile where i
plays δ∆ and all j ̸= i play Fp,n. Meanwhile,

Vp,n(δ0) =

∫ ∆

0
knαn(p)dΨ

i(s) + (N − n)

∫ ∆

0
knαn(p)− β(1− pi(s))dΨ−i(s)

+ (1−
∑
j

Ψj(∆))(knαn(p)− β(1− p(∆)).

Thus, in order for (9) to hold, for some r ∈ (0, s),

knαn(p)− β(1− pi(r)) < Vpi(r),n+1. (10)

First, consider the case where αn+1(p
i(r))) < 1. Then, for ε > 0 sufficiently small

Vpi(r),n+1 = Vpi(r),n+1(δ0) = kn+1αn+1(p
i(r))− β(1− pi(r)) < knαn(p)− β(1− pi(r)),
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Thus, equation (10) is violated. Contradiction. Next, consider the case where
αn+1(p

i(r)) = 1 and β < kn. By the inductive assumption, it follows that αn+1(q) = 1

for all q ≤ pi(s). Thus, Fpi(s),n+1 = δ∞. So, we have that for ε sufficiently small:

Vpi(r),n+1 =
kn+1p

i(r)

N − n
≤ pi(r)knαn(p) + (1− pi(r))knαn(p)− β) = knαn(p)− β(1− pi(r)).

Again, this is a contradiction of (10).

Finally, consider the case where αn+1(p
i(r)) = 1 and β ≥ kn. Recall that

αn(q) = 1 for all q ≥ p∗n. Thus, because αn(p) < 1, it follows from (4)
that αn(p(s)) must be strictly increasing in s for some s > r. Formally, let
r′ ≡ inf{s > r|αn(p(s)) is strictly increasing}. First, I claim that

knαn(p(r
′))− β(1− pi(r′)) < Vpi(r′),n+1. (11)

By the inductive assumption, since αn+1(p
i(r)) = 1, it must be that αn+1(q) = 1 for

all q < pi(r). Because αn(p(s)) is weakly decreasing in s for s ∈ [r, r′], it follows by
definition of pi(s) that pi(s) < pi(r) for all s ∈ [r, r′]. Thus, for all s ∈ [r, r′] Vpi(s),n+1 =
kn+1pi(s)

N−n . Then, for all s ≥ r,

knαn(p(s))− β(1− pi(s)) < Vpi(s),n+1 ⇔ pi(s) <
β − knαn(p(s))

β − kn+1/(N − n)
.

Now, because αn(p(s)) is strictly decreasing on s ∈ [0, r],

knαn(p(r))− β(1− pi(r)) < knαn(p)− β(1− pi(r)) < Vpi(r),n+1.

where the second inequality holds for the same reason as (10). Thus we have

pi(r′) < pi(r) <
β − knαn+1(p(r))

β − kn+1/(N − n)
<
β − knαn+1(p(r

′))

β − kn+1/(N − n)
,

which implies (11).

It follows from this that there exists an r′′ > r′ such that for all s ∈ [r′, r′′], αn(p(s))

is weakly decreasing and Vpi(s),n+1 > knαn(p(r
′)) − β(1 − pi(s)). I now claim that
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Vp(r′),n(δ0) < Vp(r′),n(δr′′−r′). To see why, note that by definition,

Vp(r′),n(δr′′−r′)− Vp(r′),n(δ0) =

∫ r′′

r′
kn[αn(p(s))− αn(p(r

′))]dΨi(s)+∫ r′′

r′
[Vpi(s),n+1 − (knαn(p(r

′))− β(1− pi(s)))]dΨ−i(s)

+
∑
j

(Ψj(r′′)−Ψj(r′))kn(αn(p(r
′′))− knαn(p(r

′))).

Since αn(p(s)) ≥ αn(p(r
′)) and Vpi(s),n+1 > knαn(p(r

′))−β(1−pi(s)) for all s ∈ [r′, r′′],
it follows that Vp(r′),n(δr′′−r′)− Vp(r′),n(δ0) > 0. This contradicts Lemma 2. □

Proof of Proposition 2. Proof by induction. Fix an n, and assume that αm(p) satisfies
the above for all m > n such that (p,m) is on-path. I begin by showing that (ODE)
must hold whenever αn(p) < 1. To this end, assume that αn(p) < 1. By Lemma 2,
there exists an ε > 0 such that for all ∆ ∈ (0, ε),

Vp,n(δ∆)− Vp,n(δ0)

∆
= 0. (12)

By definition, Vp,n(δ0) = knαn(p)− β(1− p). Meanwhile,

Vp,n(δ∆) =

∫ ∆

0
knαn(p(s))dΨ

i(s) + (N − n)

∫ ∆

0
Vp−i(s),n+1dΨ

−i(s)+

(1−
∑
j

lim
s→∆−

Ψj(s))[knαn(p(∆))− β(1− p(∆))],

where Ψ is the first-report distribution associated with the strategy profile in which i
plays δ∞ and all j ̸= i play the equilibrium strategy Fp,n. Specifically, for all s > 0,

Ψi(s) = pλ

∫ s

0
e−λr(N−n+1)(1− Fp,n(r))

N−ndr

Ψ−i(s) = p

∫ s

0
e−λr(N−n)(1− Fp,n(r))

N−n−1d(−e−λr(1− Fp,n(r)))

+(1− p)

∫ s

0
(1− Fp,n(r))

N−n−1dFp,n(r).

It follows from Lemma 1 that, for all j, Ψj is absolutely continuous on [0,∆), i.e.,
Ψj(s) =

∫ s
0 ψ

j(r)dr. where ψi and ψ−i are given by the following:

ψi(r) = pλe−λr(N−n+1)(1− Fp,n(r))
N−n
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ψ−i(s) = pe−λs(N−n+1)(λ+F ′
p,n(s+)−λFp,n(s))(1−Fp,n(s))

N−n−1+(1−p)(1−Fp,n(s))
N−n−1F ′

p,n(s+).

Substituting the expressions for both Vp,n(δ0) and Vp,n(δ∆) into (12) and rearranging,
we obtain that for all ∆ ∈ (0, ε),

K1(∆) +K2(∆) +K3(∆) = 0 (13)

where
K1(∆) ≡

∫ ∆
0 kn[(αn(p(s))− αn(p)) + β(1− p)]ψi(s)ds

∆

K2(∆) ≡
(N − n)

∫ ∆
0 [Vp−i(s),n+1 − knαn(p) + β(1− p)]ψ−i(s)ds

∆

K3(∆) ≡
(1−

∑
j lims→∆−Ψj(∆))[kn(αn(p(∆))− αn(p)) + β(p(∆)− p)]

∆
.

Now, we consider lim∆→0+ of K1(∆), K2(∆), and K3(∆) separately. For K1(∆), it
follows from L’Hôpital’s Rule, together with the continuity of αn(p(∆)) (Lemma 4)
and ψi(∆) in ∆ that

lim
∆→0+

K1(∆) = β(1− p)ψi(0) = β(1− p)pλ.

For K2(∆), it again follows from L’Hôpital’s Rule, together with the right-continuity
of Vp−i(∆),n+1 in ∆ that

lim
∆→0+

K2(∆) = (N − n)[Vp−i,n+1 − knαn(p) + β(1− p)](
λp

αn(p)
).

ForK3(∆), by the continuous differentiability of Ψj(s) that lim∆→0+
∑

j lims→∆−Ψj(s) =

0. Thus, it follows from the right-differentiability of αn(p(∆)) in ∆ that

lim
∆→0+

K3(∆) = p′(∆)
∣∣∣
∆=0+

[knα
′
n(p) + β] = −λp(N − n+ 1)(1− p)[knα

′
n(p) + β].

Since we have shown that lim∆→0+K1(∆), lim∆→0+K2(∆), and lim∆→0+K3(∆) exist,
and are given by the above expressions, it follows from (13) that

lim
∆→0+

K1(∆) + lim
∆→0+

K2(∆) + lim
∆→0+

K3(∆) = 0.

Substituting the above expressions for K1(∆), K2(∆) and K3(∆), we obtain (ODE).

Now, we wish to establish that (ODE) must hold whenever kn ≥ β or p > p∗n. It
follows from Proposition 1 that αn(p) < 1, and thus by the above, (ODE) must hold.
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Finally, we establish the two limit conditions presented in the proposition. We
begin by establishing that when kn ≥ β, limp→0+ αn(p) = β/kn. To this end,
first note by Lemma 2 that for all p > 0, Vp,n(δ0) = Vp,n(δ∞). Note further that
limp→0+ Vp,n(δ∞) = 0. Thus, limp→0+ Vp,n(δ0) = limp→0+ knαn(p) − β = 0, and
therefore, limp→0+ αn(p) = β

kn
. Next, let us consider the case where kn < β. That

limp→p∗n+ αn(p) = 1 follows from Lemma 4, since by Proposition 1, αn(p
∗
n) = 1. □

I now I define a problem (P) on α. I first show that α constitutes an equilibrium if
and only if it satisfies (P) and (SC) is optimal for a firm who has privately confirmed
the state (Lemma 5). I then show that assuming α satisfies (P), it is indeed optimal for a
firm who has confirmed the state to abide by (SC) (Lemma 6). The proofs of Lemma 5
and Lemma 6 are relegated to the Online Appendix. Thus, existence and uniqueness
of an equilibrium (Theorem 1) will reduce to establishing a unique solution to (P).

Definition 3. α is a solution to (P) if it satisfies the following for all n and p ∈ (0, 1]:

1. If kn < β and p ≤ p∗n ≡ kn−β
kn/n−β , then αn(p) = 1.

2. If kn ≥ β or p < p∗n, then α satisfies (ODE), with limit condition limp→0+ αn(p) =

β/kn if kn ≥ β and limp→pn∗+ αn(p) = 1 if kn < β.

3. αn(1) = 0.

Lemma 5. (α, F ) is an equilibrium if and only if at all (p, n) on-path, α is both consistent
with F and a solution to (P).

Lemma 6. Suppose that α is a solution to (P). Then, F1,n(0) = 1 is optimal for all n.

Proof of Theorem 1. Fix an n. Assume by induction that there exists a unique
solution to (P) for all m > n. We wish to show that there exists a unique solution
to (P) for n. It suffices to show there exists a unique solution to the following two
problems, when β ≤ kn and β > kn, respectively:

(ODE-i) is satisfied on [0, 1), and αn(0) = β/kn (BVP: β ≤ kn)

(ODE-i) is satisfied on (0, p∗n], and αn(p
∗) = 1. (BVP: β ≥ kn)

where

α′
n(p) = − 1

kn(1− p)αn(p)

N − n

N − n+ 1
[knαn(p)− Ṽpi,n+1−β(1−αn(p))(1−p)], (ODE’)
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and

Ṽpi,n+1 =

Vpi,n+1 if pi ∈ (0, 1)

0 if pi ≥ 1.

We do this by invoking the Picard existence and uniqueness theorem, and thus begin
by establishing that the right-hand side of (ODE-i) is Lipschitz continuous in αn(p)

and continuous in p for p ∈ [−ε, 1) and αn(p) ∈ [c, 1 + ε] for any c > 0 and some
ε > 0. Since pi ≡ αn(p) + (1 − αn(p))p, it suffices to show that Ṽpi,n+1 is Lipschitz
continuous in pi for pi ≥ 0. In the case where n = N , Ṽpi,n+1 = 0 for all pi, and this is
immediate. Next, suppose n > 1. First, consider the case where kn+1 ≥ β. It follows
from Lemma 2 that:

Ṽpi,n+1 =

knαn+1(p
i)− β(1− pi) if pi < 1

0 if pi ≥ 1.

Because Ṽpi,n+1 is continuously differentiable in pi when pi ̸= 1, to establish that it
is Lipschitz continuous it suffices to show that limpi→1− Vpi,n+1 = 0. Suppose this
does not hold, by contradiction. Because αn+1(·) satisfies (ODE), this implies that
limpi→1− α

′
n+1(p

i) = ∞. This implies that limpi→1 αn+1(p
i) = ∞, and thus that (ODE)

is not satisfied at pi = 1. Contradiction. Next, consider the case where kn+1 < β:

Ṽpi,n+1 =


kn+1p

i/(N − n) if pi < p∗n+1

knαn+1(p
i)− β(1− pi) if pi ∈ (p∗n+1, 1)

0 if pi = 1.

By the same reasoning as above, Ṽpi,n+1 is Lipschitz continuous for all pi > p∗n+1.
Furthermore, Lipschitz continuity holds for pi < p∗n+1. To show that Lipschitz
continuity holds for all pi, it suffices to show Ṽ·,n+1 is differentiable at p∗n+1. To this
end, we take the left- and right- derivative of Ṽ·,n+1 at p∗n+1 and show they are equal:

d

dp
Ṽp∗n+1−,n+1 =

kn+1

N − n
=

d

dp
Ṽp∗n+1+,n+1

Now, we show that there exists a unique solution for both (BVP: β ≤ kn) and
(BVP: β ≥ kn) in some neighborhood of their respective boundary conditions. By
the Picard Theorem, this follows immediately from our above-established result
that the right-hand side of (ODE-i) is Lipschitz continuous in αn(p) and continuous
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in p in some neighborhood of the boundary conditions (αn(p) = 1, p = p∗n) and
(αn(p) = β/kn, p = 0).

Next, we seek to establish global existence and uniqueness of solutions to both
(BVP: β ≤ kn) and (BVP: β ≥ kn). First, consider (BVP: β ≥ kn). The argument for
(BVP: β ≤ kn) follows analogously. Let [p∗, p) denote the largest right-open interval
such that existence and uniqueness are both satisfied. Assume by contradiction that
p < 1. Let αn(p) denote the solution along this interval.

We begin by showing that on this interval, αn(p) ∈ (α, 1], where α > 0 is some
constant. The upper bound is established as follows: suppose by contradiction that
αn(p) > 1 somewhere on the interval. By the continuous differentiability of αn along
the interval, there must exist some q < p such that αn(q) = 1 and α′

n(q) ≥ 0. However,
it follows from (ODE-i) that α′

n(q) = − 1
kn(1−q)

N−n
N−n+1 [kn− Ṽpi,n+1] < 0,where the strict

inequality follows from the fact that Ṽpi,n+1 ≤ kn+1 < kn. Contradiction. The lower
bound is established as follows: suppose by contradiction that such a lower bound
does not exist. Then, again by the continuous differentiability of αn along the interval,
there exists some p̂ ∈ [p∗n, p) such that limp→p̂− αn(p) = 0 and αn(p) > 0 for all p < p̂.

However, it then follows from (ODE) that limp→p̂− α
′
n(p) = ∞. Thus, (ODE-i) is not

satisfied on [p∗n, p). Contradiction.

Having established that on [p∗, p), 1 ≥ αn(p) > α > 0, it follows from (ODE-i), and
the observation that Ṽpi,n+1 is bounded, that α′

n is also bounded on this range. Thus,
it follows that limp→p− αn(p) ≡ α > 0 exists.

Now, consider the following modified boundary value problem, which is identical
to (BVP: β ≥ kn), except with boundary condition (p, α). Recall we have shown that
(ODE-i) is Lipschitz continuous in αn(p) and continuous in p in some neighborhood
of (p, α). Thus, we can again apply the Picard Theorem to obtain that there exists
a unique solution to the modified boundary value problem in some neighborhood of
(p, α). I.e., there exists some ε > 0 such that there is a unique solution α̃n(p) on interval
(p− ε, p+ ε). We now “paste” this solution α̃n with αn. Let

α̂n(p) =

αn(p) if p ∈ [p∗n, p)

α̃n(p) if p ∈ [p, p+ ε).

α̂n(p) is a unique solution to (BVP: β ≥ kn) on [p∗n, p+ ε), which contradicts our earlier
assumption that [p∗, p) was the largest right-open interval such that existence and
uniqueness are satisfied. Contradiction. □
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Proof of Proposition 3 and Proposition 4. Let us begin by showing that αn(p) is
weakly decreasing in p for all (p, n) on-path. By Lemma 5, it follows that when
kN < β, αN (p) = 1 for all p, and when kN ≥ β, α′

N (p) = 0 for all p. Thus, αN (p)

is constant in p. Now, consider the case where n < N . Assume by induction that
αn+1(p) is weakly decreasing in p whenever (p, n+ 1) is on path.

Assume by contradiction that there exists some p such that αn is strictly increasing.
By Lemma 5, α′

n(p) = 0 whenever β ≥ kn and p ≥ p∗n. Thus it must be that β < kn or
p > p∗n. In this case, (ODE) must be satisfied. Now define the functionX(p) as follows:

X(p) ≡ knαn(p)− β(1− pi)− Vpi,n+1. (14)

Whenever (ODE) is satisfied, the following holds:

α′
n(p) > (=)0 if and only if X(p) < (=) 0. (15)

Thus, X(p) < 0. Now, I claim that there exists p < p such that limp→p+X(p) ≥ 0. To
establish this, first suppose kn ≥ β. In this case,

lim
p→0+

X(p) = (kn + β) lim
p→0+

αn(p)− β − lim
p→0+

Vαn(p),n+1. (16)

When limp→0+ αn+1(αn(p)) < 1, it follows from Lemma 2 that

lim
p→0+

Vαn(p),n+1 = kn+1αn+1(β/kn)− β(1− β/kn).

Substituting this into (16), we obtain limp→0+X(p) = β − kn+1αn+1(β/kn). In the case
where kn+1 < β, it follows directly that limp→0+X(p) ≥ 0. Otherwise, if kn+1 ≥ β,
then because limp→0+ αn+1(p) = β/kn+1, it follows from the inductive assumption
that αn+1(p) ≤ β/kn+1 for all p, and thus that limp→0+X(p) ≥ 0.

When limp→0+ αn+1(αn(p)) = 1, it follows from the inductive assumption that
αn+1(q) = 1 for all q ≥ limp→0+ αn(p). Thus,

lim
p→0+

Vpi,n+1 = lim
p→0+

Vpi,n+1(δ∞) =
kn+1

N − n

β

kn
.

Substituting into the above expression for limp→0+ Vpi,n+1, we obtain limp→0+X(p) ≥
0, implying by Lemma 5 that kn+1 ≥ β.

Next, consider the case where kn < β. In this case, limp→p∗n+X(p) =

35



kn − limpi→1− Vpi,n+1. If limpi→1− αn+1(p
i) < 1, then by Lemma 2,

lim
pi→1−

Vpi,n+1 = lim
pi→1−

Vpi,n+1(δ0) = kn+1 lim
pi→1−

αn+1(p
i) < kn.

Thus, we obtain that limp→p∗n+X(p) > 0. Meanwhile, if limpi→1− αn+1(p
i) = 1, by the

inductive assumption, αn+1(p) = 1 for all p. Thus,

lim
pi→1−

Vpi,n+1 = lim
pi→1−

Vpi,n+1(δ∞) =
kn+1

N − n
.

So in this case as well, limp→p∗n+X(p) > 0. We have thus shown that there always
exists p < p such that limp→p+X(p) ≥ 0.

Because X(p) < 0, there must exist some q ∈ [p, p] such that X(q) < 0 and X ′(q) <

0. Differentiating X , we obtain

X ′(q) = knα
′
n(q) + β((1− q)α′

n(q) + (1− αn(q)))−
d

dq
Vqi,n+1. (17)

First, consider the case where αn+1(q
i) < 1. By Lemma 2,

Vqi,n+1 = Vqi,n+1(δ0) = kn+1αn+1(q
i)− β(1− qi). (18)

Substituting this into (17), we obtain X ′(q) = knα
′
n(q) − kn+1α

′
n+1(q

i)((1 − q)α′
n(q) +

(1 − αn(q))). Because X(q) < 0, it follows from (15) that α′
n(q) > 0. Furthermore, by

the inductive assumption, α′
n+1(q

i) ≤ 0. Thus, X ′(q) > 0. Contradiction.

Next, consider the case where αn+1(q
i) = 1. By the inductive assumption,

αn+1(p) = 1 for all p ≤ qi. Thus, Vqi,n+1 = Vqi,n+1(δ∞) = kn+1qi

N−n . Substituting into (17):

X ′(q) = knα
′
n(q) + (β − kn+1

N − n
)((1− q)α′

n(q) + (1− αn(q))). (19)

Because αn+1(q
i) = 1, by Lemma 5, β ≥ kn+1. Thus, X ′(q) > 0. Contradiction.

Next, we show that if kN ≥ β, then αn(p) = β/kn. Assume that kN ≥ β. First
consider n = N . By Lemma 5, α′

n(p) = 0 for all p on-path, and thus, αN (p) is constant
in p. Since Lemma 5 also states that limp→0+ kNαN (p) = β, it must be that αN (p) =

β/kN for all p. Now, consider n < N . Assume by induction that αn+1(p) = β/kn+1

for all p. We begin by showing that αn(p) is constant in p. Since kn ≥ β, by Lemma 5,
(ODE) must hold at all p. By (15), showing αn(p) is constant in p is equivalent to
showing thatX(p) = 0. To establish this, I begin by claiming that Vpi,n+1 = Vpi,n+1(δ0).
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In the case where kn+1 > β, it follows from Proposition 1 that αn+1(p
i) < 1, and thus

this follows from Lemma 2. In the case where kn+1 = β, km = β for all m ≥ n + 1,
and by Proposition 1, αm(p) = 1 for all p. Thus, Vp,n+1(δs) = pβ. for all δ ∈ [0,∞] and
all p. Thus, Vpi,n+1 = Vpi,n+1(δ0). Having established that Vpi,n+1 = Vpi,n+1(δ0), we
have: Vpi,n+1 = kn+1αn+1(p

i) − β(1 − pi) = βpi. Substituting this into (14), we obtain
X(p) = knαn(p) − β. Since αn(p) is weakly decreasing, αn(p) ≤ kn/β for all p, and
thus X(p) ≤ 0. Separately, by (15) αn(p) weakly decreasing implies that X(p) ≥ 0.
Combining these inequalities, we have X(p) = 0.

Finally, I show that kN < β implies that α′
n(p) < 0 whenever αn(p) < 1. Suppose

kN < β, and suppose by contradiction that at some q such that αn(q) < 1, α′
n(q) = 0.

It follows from (15) that X(q) = 0. First, suppose αn+1(q
i) = 1. Recall from (19) that

X ′(q) = (β − kn+1

N−n)(1 − αn(q)). Now, I claim that β > kn+1

N−n . When n = N − 1, this
follows from the assumption that kN < β. When n < N−1, because αn+1(q

i) = 1, this
is a result of Proposition 1. Thus, X ′(q) > 0. Since X(q) = 0 for some p < q, X(p) < 0.
By (17), α′

n(p) > 0. This contradicts αn(p) being weakly decreasing in p. Next, suppose
αn+1(q

i) < 1. By (18), X ′(q) = −kn+1α
′
n+1(q)[1 − αn(q)] > 0. This implies that there

exists some p < q such that X(p) < 0 and thus that α′(p) > 0. Contradiction. □

Proof of Corollary 3. It suffices to show that limp→0+ bn+1(p̃) − bn(p) > 0. It follows
from Proposition 2 and (4) that limp→0+ bn(p) = 0. Also, limp→0+ p̃ = limp→0+ αn(p) =

β/kn, where the final equality follows from Proposition 2. Thus, limp→0+ bn+1(p̃) =

bn+1(limp→0+ p̃) = bn+1(β/kn), Thus, limp→0+[bn+1(p̃)− bn(p)] = bn+1(β/kn) > 0. □

Commitment solution

Here, we seek the optimal solution to the monopoly case of the baseline model
in which the firm has the ability to commit to a reporting strategy. Rather than F

and α being determined simultaneously as they are in equilibrium, the firm chooses
its strategy F before α is determined. Thus, in the commitment case, the credibility
function is a function of the firm’s strategy. We formalize this dependence by denoting
the firm’s credibility function as αF . For convenience, I will be writing all functions as
a function of calendar time t, rather than the common belief p.

The firm’s objective is to choose a permissible strategy F ∈ F which maximizes its
expected payoff over the course of the game. Specifically, its problem is given by:

max
F∈F

∫ ∞

0
[αF (t)− β(1− p(t))(1− αF (t))]dΨ(t), (20)
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where, as in the baseline setup, Ψ(t) denotes probability that the firm reports before
time t under strategy F . It is useful for us to cast this problem as a choice of an optimal
credibility function α, rather than an optimal strategy F . To this end, I begin with a
useful observation, which is analogous to Lemma 1, except under the commitment:

Lemma 7. F must be continuous in equilibrium.

We omit a proof for this claim, as it follows analogously to the proof for Lemma 1. It
follows immediately from Lemma 7 that in equilibrium, both the firm’s strategy F and
the corresponding commitment function, αF , are defined by the right-hazard rate b(t)
of the firm’s strategy. That is, αF (t) =

λp(t)
λp(t)+b(t) . It further follows that Ψ is continuous

and can thus be written as a function of αF as follows:

Ψ(t) = 1− e−
∫ t
0 (b(s)+p(s)λ)ds = 1− e

−
∫ t
0

λp(s)
αF (s)

ds
.

We can now cast the optimization problem given by (20) as one over αF :

max
αF

∫ ∞

0
λp(t)[1− β(1− p(t))(

1

αF (t)
− 1)]e

−
∫ t
0

λp(s)
αF (s)

ds
.

I now prove Claim 2. Formally, I show that αF (t) = 1 for all t. In the proof that
follows, I let V (t, αF ) denote the firm’s value at time t given that it has chosen αF .

Proof of Claim 2. Assume not, by contradiction. Then there exists a t∗ such that
αF (t

∗) < 1. It follows from Lemma 7, and the assumption that F is right-continuously
differentiable, that αF must be right-continuous. Thus, there must exist a α̂ < 1 and
ε > 0 such that αF (t) < α̂ for all t ∈ [t∗, t∗ + ε]. For any αF , we can write:

V (0, αF ) =

∫ t∗+ε

0
λp(t)[1−β(1−p(t))]( 1

αF (t)
−1)e

−
∫ t
0

λp(s)
αF (s)

ds
dt+e

−
∫ t∗+ε
0

λp(s)
αF (s)

ds
V (t∗+ε, αF ).

Now, consider the deviation α̃F :

α̃F (t) =

1 if t ∈ [t∗, t∗ + ε]

αF (t) otherwise.

Thus,

V (0, αF ) = V (0, α̃F ) +

∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))(

1

αF (t)
− 1)]e

−
∫ t
0

λp(s)
αF (s)

ds
dt

−
∫ t∗+ε

t∗
λp(t)e−

∫ t
0 λp(s)dsdt+ (e

−
∫ t∗+ε
t∗

λp(s)
αF (s)

ds − e−
∫ t∗+ε
t∗ λp(s)ds)V (t∗ + ε, αF )

(21)
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We note the following two inequalities:∫ t∗+ε

t∗
λp(t)[1− β(1− p(t))(

1

αF (t)
− 1)]e

−
∫ t
0

λp(s)
αF (s)

ds
dt <

∫ t∗+ε

t∗
λp(t)e−

∫ t
0 λp(s)dsdt

e
−

∫ t∗+ε
t∗

λp(s)
αF (s)

ds − e−
∫ t∗+ε
t∗ λp(s)ds < 0

These two inequalities combined with (21) yields V (0, αF ) < V (0, α̃F ), and thus, α̃F

serves as a profitable deviation. Contradiction. □

References
Giovanni Andreottola and Antoni-Italo de Moragas. Scandals, media competition and

political accountability. 2020.

Michael R Baye, Dan Kovenock, and Casper G De Vries. The All-Pay Auction with
Complete Information. Economic Theory, 8(2):291–305, 1996.
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