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Abstract

We study the reporting behavior of a reputation-driven news firm. A sender (news

firm) dynamically learns about a state via conclusive signals and decides when to make

a report to a receiver (consumer). The sender strategically reports to maximize their

reputation for learning. In equilibrium, the sender’s reputation suffers from delaying

reporting and benefits from accuracy. Thus, reputational motives lead to an endogenous

speed-accuracy tradeoff. A sender with low ability to learn always fakes, i.e. reports

despite being ignorant of the state, with positive probability. However, this faking

probability decreases over time, and thus later news reports are more trustworthy.
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1. Introduction

The recent addition of social media and non-traditional outlets to the news media lanscape
has brought with it concerns about misinformation. However, factual errors have often
been a characteristic of traditional media as well. Many such errors by traditional media
have regarded some of the most crucial news stories in the United States: the 2000 presidential
election 1, the 2013 Boston bombings 2, the Sandy Hook massacre 3, the 9/11 attacks, the
John F. Kennedy assassination 4, etc. The ubiquity of such errors is reflected in the beliefs
of consumers: in a Pew Research Center survey from 2009, only 29% of respondents said
that news organizations often “get the facts straight”, with 63% of respondents expressing
a belief that news stories are “often inaccurate”.5

In this paper, we consider how reputational concerns impact news firms’ reporting
behavior, and in particular the incidence of misreports. This approach is driven by the
observation that news firms’ vitality relies heavily on their reputation. A news firm with a
reputation for both skilled reporting and journalistic integrity is able to attract and retain
consumers who value these attributes. While reputation may matter in a variety of industries,
it is particularly salient in the news industry, where given the frequency of exchange between
firms and consumers, sustaining these interactions is critical to the firm’s welfare.

To this end, we present a model of a reputationally concerned sender, who dynamically
learns about an unknown state, and reports to a consumer. Firms wish to maximize their
reputation for being “good”, which entails both a high ability for learning and a sense
of integrity (i.e., honest reporting). We further incorporate a key feature of the news
environment: senders decide not only what to report, but when to report.

Our analysis gives rise to three key findings. First, in equilibrium, senders “fake” with
positive probability, which entails reporting despite being completely uninformed about
the state. This behavior is responsible for a higher incidence of misreporting than that
which would prevail if the sender were truthful, i.e., only reporting when she is informed.
Importantly, the equilibrium is such that the uninformed sender is indifferent between
faking and truth-telling. Notably, we find that faking, and the resulting misreporting, is
ceaseless in equilibrium, i.e, it occurs with positive probability at any given time.

1 Howard Kurtz. Washington Post, December 22, 2000.
2 David Carr. The New York Times, April 21, 2013.
3 Paul Farhi. Washington Post, December 18, 2012
4 Rebecca Greenfield. The Atlantic, September 16, 2013
5 “Press Accuracy Rating Hits Two Decade Low.” Pew Research Center, Washington, D.C. (September 13,

2009) https://www.pewresearch.org/politics/2009/09/13/about-the-survey-373/.
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Second, we find that in equilibrium, a sender’s reputation is rewarded for two separate
characteristics of her report: speed and accuracy. That is, while the sender is intrinsically
interested solely in maximizing her reputation, she behaves as if she wishes to maximize
some combination of speed and accuracy. Furthermore, for the sender who is ignorant
about the state, these two objectives are at odds, and thus she faces a speed accuracy
tradeoff: while faking will prevent her from incurring the reputational deterioration that
comes with further delaying a report, truth telling saves her from incurring the reputational
harm from making a mistake. In equilibrium, the desire for speed and accuracy precisely
counterbalance each other in a way that preserves the uninformed sender’s aforementioned
indifference between faking and truth telling.

This result is compelling for a number of reasons. With regards to our application,
it shows that reputational concerns alone may be responsible for the all-familiar speed-
accuracy tradeoff faced by newsrooms. Rather than explicitly modeling this tradeoff, we
have provided a microfoundation for it, by showing that it arises endogenously when
news media are reputation-concerned. Beyond our application, this result demonstrates
speed and accuracy, which are canonically assumed to be of intrinsic value to an individual
decision maker, may be of signalling value in a delegated learning setting. Finally, because
the importance of speed and accuracy is endogenous, this allows us an opportunity to
understand how they dynamically impact the sender’s reputation. With regards to accuracy,
we find that while making an accurate report causes an improvement in the sender’s
reputation and making an inaccurate report causes a decline, the magnitudes of these
changes are not equal: the reputational harm from inaccuracy strictly exceeds the reputational
gain from accuracy. The interpretation of this result in a news media setting is intuitive:
while accurate reporting may cause a modest improvement in a news firm’s reputatability,
the reputational harm from misreporting is much more consequential.

Thirdly, we consider dynamics in the sender’s reporting behavior, specifically how her
propensity for misreporting changes over time. We find that if the sender is of sufficently
low ability, she becomes strictly more truthful as time passes, and thus becomes less likely
to misreport. This is despite the fact that speed continues to benefit her reputationally over
the course of the game. With regards to our application, this result implies that a news
firm is more hasty with its reporting, and thus more likely to misreport, when her research
process is still in its early stages, but becomes more scrupulous as time passes.

This paper exists at the intersection of two separate literatures: reputation for learning
and games of timing, and specifically those in which decision timing is of signaling value.
In the literature on reputation for learning, senders wish to maximize the receivers’ belief
about their learning ability. Ottaviani and Sørensen (2006b) study this problem in a general
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static setting, finding that it is generically impossible for senders to truthfully report their
information. In other more specific environments (Ottaviani and Sørensen (2006c), Ottaviani
and Sørensen (2006a), Dasgupta and Prat (2008), Gentzkow and Shapiro (2006), Prendergast
and Stole (1996)), including dynamic ones, this deviation from truth-telling takes various
forms, but universally involves low-ability senders manipulating their messages or actions
to mimic the behavior of high-ability senders. Two of these papers, Prendergast and Stole
(1996) and Dasgupta and Prat (2008), consider dynamic settings. Dasgupta and Prat (2008)
model information transmission in financial markets, finding that the degradation of information
driven by reputational concerns makes it impossible for prices to converge to the market
value. Meanwhile, Prendergast and Stole (1996) model a reputation-concerned investment
manager. They find low-ability senders exaggerate their information in early periods,
while discounting newer information in later periods.This result stems from the fact that
high-ability senders learn more quickly, and thus act more decisively on their information
early in the game. As we will illustrate below, this same force is at play in our model:
low-ability senders endogenously quicken their reports to partially mimic the high-ability
senders’ ability to learn faster. Relatedly, Scharfstein and Stein (1990) consider an investment
setting, finding that low-ability individuals will act suboptimally due to reputational concerns,
where in their setting, consists of herding on the decisions of prior investors. While these
latter papers consider dynamic settings, they are not games of timing, i.e., players choose
how to act, but not when to do so. This is a vital feature of the media application we
consider, as newsrooms decide both what and when to report.

There is an extensive literature on decision timing in games. What is relevent to our
work, however, is specifically that in which decision timing is of signalling value (Guttman,
Kremer, and Skrzypacz (2014), Gratton, Holden, and Kolotilin (2018), Bobtcheff and Levy
(2017), Halac and Kremer (2020)). These papers also come to varying conclusions regarding
whether early or later timing is favorable for the sender. In Guttman et al. (2014), managers
decide whether and when to disclose information about their firm to the market, and
they obtain that later disclosures are viewed more favorably by the market, and thus of
greater signalling value to the firm. Meanwhile, Bobtcheff and Levy (2017) consider a
cash-constrained firm that endogenously chooses when to make an investment, which in
turn serves as a signal to other investors regarding the project’s viability. They come to
the opposite conclusion: early investment by the firm serves as a signal of project viability,
which in turn will increase the firm’s ability to obtain additional investment for its project.
We obtain a similar outcome to Bobtcheff and Levy (2017), in that in the equilibrium
of our model, early reporting is reputationally advantageous for the sender. Notably,
however, while in their setting this incentive to act early is driven by a desire to influence

4



the behavior of investors, in our setting, it is purely reputational.

As noted, our paper lies at the intersection of these two literatures. This intersection
is also explored by Smirnov and Starkov (2024). Specifically, they model a sender who is
concerned with both their interim reputation throughout the game (i.e., at any given time)
as well as their terminal reputation. The sender in their model faces a tradeoff between
these two types of reputation, which results in dynamics that are qualitatively the opposite
of what we obtain: reputation increases conditional on no report, with reports causing
instantaneous drops in reputation. Furthermore, this tension between an agent’s terminal
and interim reputations gives rise to potential non-existence of equilibria, whereas I find
that equilibria always exist. I further incorporate learning on the part of the bad agent, and
thus find that these agents face a speed-accuracy tradeoff in equilbrium.

The remainder of this paper will proceed as follows. In section 2, we present a dynamic
model of a reputation-concerned news firm. In section 3, we characterize the equilibrium in
a static version of the model presented in section 2. In section 4, we provide an equilibrium
characterization for the full, dynamic model, by building on the static characterization.
In section 5, we analyze the equilibrium reputation function, showing that it rewards the
sender for both speed and accuracy in reporting. In section 6, we examine dynamics in the
sender’s reporting behavior, showing that if she is of sufficiently low ability, she becomes
more truthful as time passes. Finally, section 7 concludes. All formal proofs are relegated
to the Appendix.

2. Model

I present a model of a reputation-driven sender who dynamically learns about an unknown
state and chooses when to make a report.

2.1. The game

There is one sender and one receiver. A binary, time-invariant state θ ∈ {0, 1} is initially
unknown to both players. We assume that at the start of the game, both sender and receiver
hold prior Pr(θ = 1) = 1

2
.

The sender has access to a private signal about the state, the informativeness of which
depends on her type. The sender’s type, denoted by i, may either be “good” (i = G) or
“bad” (i = B). This type is private information: it is known by the sender, but not by the
receiver. We let R0 ∈ (0, 1) denote the sender’s initial reputation, i.e., the receiver’s prior
belief that the sender is good. The sender learns via conclusive Poisson signals: in any
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period t ∈ {1, 2, ..., T}, θ is privately revealed to the sender with probability λi. I.e., in each
period, the sender observes a signal rt:

rt =

θ with probability λi

∅ = with probability 1− λi

where rt = ∅ indicates that the state was not revealed to the sender at t. Crucially, we
assume λG > λB ≥ 0. I.e., the good sender’s signal is strictly more (Blackwell) informative
than that of the bad sender.

At every period t in which the game has not yet ended, after observing rt, the sender
may choose to report to the receiver. Reporting consists of sending a message m ∈ {0, 1}
to the receiver. The sender can report at most once over the course of the game, i.e., once
she reports, the game ends. Alternatively, the sender can choose to abstain, which consists
of sending message m = ∅. If the sender abstains, the game continues to the next period
(unless t = T , in which case the game ends). The sender is not obligated to report, i.e.,
she can choose to abstain even in the last period, T . We let τ denote the time at which a
report is made, and denote the absence of a report by τ = ∅. At T + 1 (i.e., after observing
the sender’s report, or lack thereof) the receiver observes a private signal s ∈ {0, 1} about
θ. Specifically, Pr(s = θ) = π ∈ (1

2
, 1). 6 The sender’s payoff is given by his reputation,

i.e., the receiver’s belief that he is the good type, at the end of T + 1 (i.e., after the receiver
observes τ , m (which equals ∅ if τ = ∅) and s.

2.2. Equilibrium

At any given time, p denotes the sender’s belief that θ = 1. A (Markov) strategy for the
bad firm at time t is given by σt(m, p), and for the good firm is given by σG

t (m, p). This
specifies the probability that the sender sends messagem under belief p, conditional on not
having yet reported. σt is a distribution, and thus:∑

m∈{0,1,∅}

σt(m, p) = 1.

In defining Markov strategies, we are implicitly restricting the strategy of a sender who
has learned the state to not depend on time t in which she did so. In equilibrium, this
assumption is without loss and is used for notational convenience.

The receiver’s beliefs about the sender are denoted by a reputation function R. Rt(m, s)

6 We assume that this private signal is not perfectly correlated with the state to avoid the possibility of
off-path occurences where the sender is truthful but their report does not match the state.
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denotes the receiver’s belief that the sender is good upon observing message m ∈ {0, 1} at
time t and private signal s. We let R(∅, s) denote the sender’s reputation in the case that
she never sends a report.

We seek a perfect Bayesian equilibrium. Specifically, this consists of strategies for each
type, σ and σG. First, at any given t, all player beliefs (p and R) are consistent with Bayes
Rule given the bad (good) sender’s strategy σ (σG), and in the case of the sender, her
private information r1, ..., rt. Second, the senders’ strategies (both type B and type G) must
maximize their respective expected reputations at all t and beliefs p they may hold.

I now impose a selection assumption. Specifically, I restrict attention to equilibria where
the good sender is truthful: she sends message θ if and only if she knows the state. Formally,
she follows strategy σG, where for all t,

σG
t (1, 1) = σG

t (0, 0) = σG
t (∅,

1

2
) = 1

This assumption is a selection criterion and not a formal restriction on the good sender’s
behavior. I.e., the good sender is not a commitment type, we are rather restricting attention
to equilibria in which the good sender is truthful. This selection criterion also has an
economic rationale: we wish to examine equlibria in which news firms’ ability is tied to
their integrity, i.e., their judiciousness when reporting. In the analysis that follows, we
will refer to a perfect Bayesian equilibrium that satisfies the selection assumption as an
equilibrium, and we will frequently refer to the bad sender simply as the sender.

3. Static case: characterization

Before analyzing the full dynamic model above, we will provide a characterization for
the static case, in which T = 1. This will establish certian key results which will extend
to the dynamic setting, without having to address the additional analytical complications
that dynamics introduce. We show that there is a unique equilibrium. In this equilibrium,
a sender who knows the state reports it truthfully, by a sender that does not know the state
mixes between reporting truthfully (sending message ∅) and “faking” (sending message
0 or 1). We will also show that in equilibrium, senders are reputationally rewarded for
accuracy. For the remainder of this section, we will drop the time index from all functions.

3.1. Link between strategy and reputation

The below analysis relies heavily on the relationship between the sender’s strategy and
the reputation function, R. Because the receiver is Bayesian, the reputation function is
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computed using Bayes Rule as follows:

R(m, s) =
1

1 + L(m, s)1−R0

R0

,

where L(m, s) is the likelihood ratio of outcome (m, s) for bad senders compared to good
senders under σ:

L(m, s) ≡ Pr(m, s|B)

Pr(m, s|G)
.7

Thus, the reputation a receiver ascribes to a particular outcome depends on how likely
the outcome is for the good sender as compared to the bad sender. This highlights the
key force behind our results: the more weight the bad sender’s strategy σ places on a
particular outcome occuring, the lower the reputation assigned to that outcome will be.
In particular, any outcome that is relatively less likely for the bad sender compared to the
good sender will cause her reputation to improve compared to her initial reputation R0,
while an outcome that is relatively more likely for the bad sender will cause her reputation
to deteriorate.

3.2. Behavior when informed

In this section, we show that the sender truthfully reports arrivals. I.e., she reports 1 (0)
if she has learned that the state is 1 (0). To this end, we begin by establishing two lemmas,
pertaining to the sender’s strategy and the reputation function, respectively.

We begin by establishing a fundamental difference in reporting behavior between the
good sender and bad sender. While a good sender reports 0 (1) only if she has learned that
θ = 1 (θ = 0), respectively, this is not the case for the bad sender. I.e., the bad sender’s
reports are not always truthful: she will, with strictly positive probability, send message 1

(0) even when θ ̸= 1 (θ ̸= 0).

Lemma 1. In any equilibrium, for θ ∈ {0, 1}∑
p ̸=θ

σ(θ, p) > 0.

To see why this must hold suppose that the bad sender reports 1 only if she has learned

7 Formally, Pr(m, s|i) is a function of the sender’s strategy, σi, e.g.:

Pr(m, s|B) =
1

2

∑
θ∈{0,1}

[σB(m, θ)λB + σB(m,
1

2
)(1− λB)][π + (1− 2π)I(θ ̸= s)].
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that θ = 1. Because the bad type learns that θ = 1 with strictly lower probability, this
means that reporting 1 is relatively more likely for the good type. Furthermore, this holds
regardless of the receiver’s private signal. Thus, a report of 1 guarantees a strictly improved
reputation for the sender. Thus, message 1 must serve as a profitable deviation at some p.

Next, we establish a property of the reputation function: the sender’s reputation is
rewarded for being accurate, namely, for matching the receiver’s private signal.

Lemma 2. In any equilibrium, for m ̸= m′ ∈ {0, 1}

R(m,m) > R(m,m′).

Again, this result is driven by the connection between the sender’s strategy and the
reputation function. Showing that the sender is rewarded for being accurate is equivalent
to showing that that conditional on reporting, a good sender is more likely to be accurate
than the bad sender. Because the good type’s reports are strictly truthful, they are maximally
correlated with s. However, this is not the case for the bad type: by Lemma 1, the sender
will report m ∈ {0, 1} with strictly positive probability even when the state is not m, and
her reports are consequently less correlated with s. It follows that reports by good senders
are more likely to be accurate, and thus the reputation function must rewards accuracy.

With these two observations we can now show that the sender must truthfully report
the state if she has learned it.

Proposition 1. In any equilibrium, for θ ∈ {0, 1},

σ(θ, θ) = 1.

Before proceeding, let us discuss the intuition behind this. Consider a sender who has
learned that θ = 1 and must decide which message (1, 0, or ∅) to send. I first argue
that the message 0 can’t be sent with positive probability. If this were the case, since by
Lemma 2 accuracy is reputationally beneficial, message 0 must provide a strictly higher
payoff to the sender than 1. I.e., message 1 is sent with zero probability under p = 0

and p = 1
2
, a contradiction of Lemma 1. Next, I argue that message ∅ can’t be sent with

positive probability. Because the good type is committed to truthful reporting, sending
an accurate report signals that the sender knows the state, whereas abstaining signals
ignorance. Because the bad type is less likely to know the state than the good type, an
informed report makes her appear relatively more reputable than abstaining. For this
reason, ∅ can’t be sent with positive proabiblity, either.

9



3.3. Behavior when uninformed

Proposition 1 tells us that in equilibrium, the bad sender mimics the good sender’s
strategy when she is informed. I.e., she reports truthfully. Below, we will demonstrate
that under non-arrival, this is not the case. In particular, while the good sender abstains
(i.e., reports ∅) when she is uninformed, the bad sender mixes between faking, i.e., reporting
despite not knowing the state, and abstaining. Furthermore, we show that she fakes the
two messages m ∈ {0, 1} with equal probability.

Proposition 2. In any equilibrium, for all m ∈ {0, 1, ∅},

σ(m,
1

2
) > 0.

Furthermore, σ(1, 1
2
) = σ(0, 1

2
).

To see why the sender must report both 0 and 1 with strictly positive probability when
uninformed, recall that by Proposition 1 above, the sender cannot misreport arrivals (i.e.,
σ(1, 0) = σ(0, 1) = 0). Thus, in order to satisfy Lemma 1, the sender must be reporting
both 0 and 1 with strictly positive probability when p = 1

2
. To see why the sender must

report ∅ with positive probability when uninformed, let’s consider what would transpire if
she didn’t. Proposition 1 would then imply that the bad sender never abstains, regardless
of her information. Because the good sender does so with strictly positive probability,
abstaining would then guarantee a perfect reputation (i.e.,R(∅, 1) = R(∅, 0) = 1). Abstaining
would then serve as a profitable deviation for the bad sender, a contradiction.

Next, let’s consider the second part of the proposition, which states that the uninformed
sender must mix equally betwen 0 and 1. To see why this must be true, suppose by
contradiction that the bad type reports one message m ∈ {0, 1} with greater probability
than the other, m′. Because the good type reports the two messages with equal probability,
m′ is more likely than m to have come from the good type. This means that m′ will
on average yield a strictly higher reputation for the uninformed sender than m. This in
turn implies that m′ will serves as a profitable deviation from m when she is uninformed,
violating our result that the sender must be indifferent between the two messages.

3.4. Equilibrium existence and uniqueness

Thus far, we have shown that in any equilibrium, the sender truthfully reports arrivals,
and when she experiences non-arrival, mixes nontrivally between all three potential messages
0, 1, and ∅. We claim that there exists a unique strategy in this class that constitutes an
equilibrium.
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Formally, let σb for b ∈ (0, 1) denote the strategy such that

σb(1, 1) = σb(0, 0) = 1 and σb(1,
1

2
) = σb(0,

1

2
) = b/2

Proposition 3. There exists a unique equilibrium, consisting of a strategy σb∗ , where b∗ ∈ (0, 1)

To see why theree xists a unique equilibrium, consider what happens to the reputation
function, and consequently the sender’s value function, as b changes. Specifically, let
Rb(m, s) denote the reputation function under strategy σb, and V b(m, p) the sender’s value
from sending message m under belief p. Note that this value function is a function of the
reputation function:

V b(m, p) = p̃Rb(m, 1) + (1− p̃)Rb(m, 0),

where p̃ ≡ pπ + (1 − p)(1 − π) denotes the probability that s = 1 is realized, given belief p
about the state. Note that in order for σb to constitute an equilibrium, by Proposition 2, it
must be that

V b(1,
1

2
) = V b(0,

1

2
) = V b(∅, 1

2
).

To show that there exists a unique b such that the value functions satisfy this conditions, we
make two observations. First, we consider the value function at the two extreme cases of b.
When b = 0, i.e., when the bad sender is truth-telling, her lower arrival rate compared to
the good sender means that reporting will always strictly improve the sender’s reputation,
whereas abstaining will always harm the sender’s reputation. Thus, reporting yields a
strictly higher value for the uninformed sender:

V b(1,
1

2
) = V b(0,

1

2
) > V b(∅, 1

2
).

At the other extreme, when b = 1, the bad sender always reports and never abstains,
regardless of her belief. Because the good sender abstains with strictly positive probability,
this implies that abstaining will guarantee a perfect reputation. So in this case, abstaining
will yield a strictly higher value for the uninformed sender:

V b(1,
1

2
) = V b(0,

1

2
) < V b(∅, 1

2
).

Next, let’s consider what happens to the value functions as b increases. Note that as b
increases, the bad sender is on average reporting more and abstaining less. Thus, the
reputation function will respond by assigning increasingly higher reputation to senders
who abstain, and lower reputation to senders who report. This will in turn be reflected in
the value functions: the value of reporting is strictly decreasing in b, whereas the value of
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Figure 1: Value function associated with σb. b∗ denotes
unique value such that indifference condition is satisfied.

abstaining is strictly increasing in b (see Figure 1). Given our observations about V b at the
endpoints, this implies that there exists a unique point b∗ ∈ (0, 1) such that indifference is
achieved.

3.5. Discussion

To summarize, we have shown that the static equilibrium is one in which the bad sender
truthfully reports arrivals, but when she does not know the state, she mixes between
abstaining and “faking”, i.e., making an uninformed report. Furthermore, this equilibrium
is one in which senders are endogenously rewarded for making accurate reports (Lemma 2).

This reward for accuracy is crucial to sustaining the uninformed sender’s indifference
between reporting and abstaining. Because good types are better learners and thus more
likely to make informed reports, senders are rewarded for reporting. However, the sender
is also penalized for making an inaccurate report (an outcome which is relatively more
likely for the uninformed sender), which deters the sender from reporting. In equilibrium,
the reputation function is such that these incentives precisely counteract each other when
the sender is uninformed, yielding indifference.

As we will discuss below, these same incentives and reporting behaviors prevail under
the equilibrium of the dynamic model, in particular the reputation function’s endogenous
reward for accuracy. The dynamic model, however, further sheds light on how the passage
of time impacts both the sender’s behavior and her reputation. Understanding these dynamics
will be the focus of the sections that follow.
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4. Dynamic model: Faking in equilibrium
Above, we showed that in any equilibrium, the sender truthfully reports arrivals, and

when she experiences non-arrival, mixes between all three potential messages 0, 1, and ∅.
In this section, we show that the equilibrium in the dynamic setting must also take this
form.

4.1. Correlation between state and type

Showing that the dynamic characterization takes the same qualitative form as in the
static setting presents unique challenges. One of these involves potential correlation between
the state θ and the sender’s type i. In the static model, we relied on the assumption that
they were uncorrelated, and this assumption was responsible for the resulting symmetry
of the sender’s strategy across messages (for instance, that σ(1, 1

2
) = σ(0, 1

2
)). However,

one cannot assume this to be true in a dynamic setting. This is due to the fact that the
sender’s strategy may induce correlation between type and state in periods beyond the first.
Such correlation will in turn induce behavior in the subsequent periods that violates this
symmetry across messages that we obtained in the static setting. In this subsection, we
demonstrate that although possible in general, such correlation between the state and the
type can never arise in equilibrium.

To this end, we begin by formalizing a notion we refer to as silence symmetry.

Definition 1. A strategy is silence symmetric if at time t

σt(∅, 1) = σt(∅, 0)

In words, this condition stipulates that the sender if the sender chooses to withhold a
report despite knowing the state (i.e., remaining silent), she must be equally likely to do
so in each state. We are concerned with silence symmetry because correlation between the
sender’s type and the state arises when it is violated.

To fix ideas, let’s consider examples of strategies which both satisfy and fail this condition.
A simple example of silence symmetry is the case in which the sender is truthful: regardless
of the state, an informed sender withholds a report with probability 0. Another example
of silence symmetry is one in which the sender never reports in a given period, regardless
of her information. In this case, she withholds a report with probability 1, regardless of the
state.

Let us now consider an example of a strategy in which silence symmetry is violated.
Consider the strategy σ̂t in which the sender truthfully reports 1, but abstains otherwise,
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i.e.,
σ̂t(1, 1) = 1, σ̂t(∅, 0) = σ̂t(∅,

1

2
) = 1 (1)

In this extreme example of silence asymmetry, the sender always withholds a report when
she knows the state is 0, but never does so when she knows the state is 1. To understand
why the failure of silence symmetry can cause correlation between the sender’s type and
the state, consider the case where T = 2 and the bad sender plays σ̂1 in the first period. This
implies that the bad sender is more likely to survive into the second period (i.e., not report
in the first period) under θ = 0. Specifically, when θ = 0, she survives with probability 1,
but if the state is 0, she only survives with probability 1− λB. However, this is not the case
for the good sender: because she is truthful in equilibrium, she is equally likely to reach
period 2 regardless of the state, specifically with probability 1 − λG. This in turn implies
that at the beginning of the second period, there exists a correlation between the sender’s
type and the state: θ = 0 with greater probability if the sender is bad than if the sender is
good.

4.2. Strategy in equilibrium

Having illustrated the importance of silence symmetry, we begin by establishing a set
of necessary conditions that must hold in any equilibrium of the dynamic setup. Among
these conditions is silence symmetry.

Lemma 3. In equilibrium, at all t,

1. σt is silence symmetric.

2. σt(1, 0) = σt(0, 1) = 0.

3. σt(1, 12) = σt(0,
1
2
) > 0.

In addition to silence symmetry, we establish two facts that also held in the static setup:
namely, that the sender never reports the “wrong” message when she is informed about
the state (point 2) and that the sender “fakes” a report with positive probability in every
period (point 3). However, unlike the static setting where we were able to show both these
points directly, in the dynamic setting, we must take an inductive approach. For instance,
silence symmetry at period t is necessary to show that conditions 2 and 3 hold in t + 1. To
see why this is the case, recall that a failure of silence symmetry in period t would imply
that the state is correlated with the sender’s type in t + 1. This could make one of the two
reports (in particular, the one that was withheld less by the bad sender in t) better for the
sender’s reputation in t+1, all else equal. This could in turn cause violations of conditions
2 and 3 above.
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While these necessary conditions substantially narrow the set of candidate equilibria, it
still leaves open the possibility that the sender withholds reports with positive probability
in a given period, i.e., that σt(∅, 1) = σt(∅, 0) > 0. We next rule this out as a possibility,
establishing that the sender’s equilibrium strategy in every period takes the same form as
in the static model.

To this end, we begin by defining an T -period equivalent to the class of strategies we
defined in the static setting. For any b ≡ (b1, ..., bT ) ∈ (0, 1)T , let σb denote the strategy such
that

σb
t (1, 1) = σt(0, 0) = 1 and σb

t (1,
1

2
) = σb

t (0,
1

2
) = bt/2.

This strategy is one in which, in every period, the sender truthfully reports arrivals, and
mixes nontrivially between all three messages when she does not, specifically reporting 0

and 1 with equal probability. We now claim that any equilibrium must belong to this class.
I further establish existence of such an equilibrium, which follows from the Kakutani fixed
point theorem.

Proposition 4. There exists an equilibrium. Furthermore, in any equilibrium, the sender’s strategy
is given by σb, for some b ∈ (0, 1)T .

Let us now take stock of this result. First, note that in equilibrium, the sender fakes a
report with positive probability in each period. I.e., faking never ceases. Second, while
the equilibrium strategy here is a T -period extension of the static equilibrium strategy, it
is dynamic in nature. Specifically, the probability with which the sender reports when she
has not learned the state, bt changes over time. We will explore the dynamics in bt later in
the paper. However, we will begin by examining the equilibrium reputation function, and
the dynamics it entails.

5. Reputation: accuracy and speed

Here, we consider how reputation is assessed dynamically in equilibrium. We begin by
decomposing the sender’s reputation into two components: one capturing the impact of
time’s passage on her reputation, the other denoting the impact of the report itself, and its
associated accuracy, on her reputation. First, we establish that, as in the static setting, the
sender is rewarded for accuracy. We specifically show that making an accurate report will
cause the sender’s reputation to strictly increase from where it was before she reported,
whereas an inaccurate report will cause her reputation to strictly decrease. We further
examine the relative magnitudes of these changes, and find that the reputational decline
that comes from making an inaccurate report strictly exceeds the reputational gain from

15



making an accurate one. Finally, we find that the sender’s reputation is rewarded for speed:
with every time increment that passes without the sender making a report, her reputation
deteriorates.

In order to facilitate the aforementioned decomposition of the sender’s reputation function,
we begin by definingRt for t ∈ {0, 1, ..., T}, the sender’s interim reputation. This denotes the
receiver’s belief about the sender’s type conditional on the event that she has not reported
at any s ≤ t. When t = 0, R0 is the sender’s prior reputation. For all t ≥ 1, Rt is an
equilibrium object, and can be computed recursively using Bayes’ Rule, given the sender’s
strategy. Under the equilibrium characterization we obtain above, this recursive definition
takes the following form:

Rt =
1

1 + 1−Rt−1

Rt−1

(1−λB)(1−bt)
1−λG

.

Now let us interpret this object. While in our model the sender is solely concerned with
her reputation at the end of the game,Rt captures how the sender’s reputation dynamically
evolves as the game progresses. Specifically, Rt specifies the sender’s reputation at periods
preceding that in which she reports. For instance, if the sender were to report in period
t = 5, R4 denotes where her reputation stood immediately before her report was made.

By linearly separating the sender’s interim reputation from her reputation function, it
can be written in the following form:

Rt(m, s) = Rt−1 + αtI(m = s) + βtI(m ̸= s), (2)

where, like Rt, αt and βt are equilibrium objects and functions of the sender’s equilibrium
strategy. Note that (2) implicitly assumes that the sender’s reputation depends on the
content of her report (whether m ∈ {0, 1}) only to the extent that it impacts her accuracy
(i.e., whetherm = s). While we have omitted a formal proof of this, the reputation function
can be written in this way due to the fact that in equilibrium, the sender’s strategy exhibits
symmetry across messages m ∈ {0, 1} and states θ ∈ {0, 1} in every period.

Now, let us interpret this decomposition. As discussed above, the first component, Rt−1,
denotes the sender’s reputation immediately prior to her time t report. This component
thus captures all the dynamic change in her reputatation that happened prior to her report,
and specifically, the impact that delay had on her reputation. Meanwhile, the residual
component, αtI(m = s) + βtI(m ̸= s), denotes the change that occurs in the sender’s
reputation at the moment in which she reports. This component accounts for the impact
that accuracy has on the sender’s reputation. Note that the αt and βt are time-contingent:
this is due to the fact that the magnitude of impact accurate (or inaccurate) reporting has on
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the sender’s reputation, like Rt, is dynamic in nature. Figure 2 below illustrates how the
sender’s reputation evolves dynamically, and sheds further light on this decomposition:
the dotted lines denote time paths of the sender’s reputation, when she reports at t = 5,
either accurately (blue line) or inaccurately (red line). Her reputation at all periods prior to
her report are given by Rt, and the final jump in her reputation that occurs in the period in
which she reports is given by αt or βt, if her report was accurate or inaccurate, respectively.

5.1. Accuracy

With this decomposition in hand, we first seek to understand the role that accuracy plays
in the sender’s reputation. Our findings are summarized by the following proposition.

Proposition 5 (Accuracy and reputation). In any equilibrium

1. αt > 0 and βt < 0.

2. −βt > αt.

Proof. See appendix. □

This proposition makes two separate claims. Let us begin by understanding the first,
i.e., that αt > 0 and βt < 0 for all t. This claim asserts that at any given point in time, a
correct report will cause an increase in the sender’s reputation compared to where it stood
immediately prior to the report, whereas an incorrect report will cause a decrease. In part,
this is an extension of Lemma 2 from the static model, in that it implies that in any period,
a sender’s reputation from making a correct report, Rt(1, 1), strictly exceeds her reputation
from making an incorrect report, Rt(1, 0). As in the static model, this is driven by the fact
that the bad sender fakes with strictly positive probability in any given period, while the
good sender does not. Because faking is associated with inaccurate reporting, inaccuracy
is thus reputation-damaging.

However, this claim goes a step further than this: it additionally asserts that the sender’s
reputation following a correct report must strictly exceed her interim reputation immediately
prior to that report, whereas her reputation following an incorrect report must lie strictly
below her interim reputation. That is, accurate reporting causes an immediate increase in
the sender’s reputation, whereas inaccurate reporting causes a deterioration. The intuition
for this is clear: suppose by contradiction that both αt and βt were positive. Then, all time-t
senders could guarantee an improvement in their reputations by reporting. It would thus
follow that at the end of the game, the sender’s reputation will improve with probability 1,
regardless of her ability. Thus, the reputation function must not be consistent with Bayes
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Rule, a contradiction. If, instead we assume that both αt and βt were negative, no sender
would choose to report at time t, as it will cause her reputation to decline with probability
1, even if her report is accurate. Instead, she would elect to abstain, in which case her
reputation would evolve to Rt, which must, in order to be consistent with a negative αt

and βt, lie above Rt−1.

Let us now consider the second component of the claim: namely, that −βt > αt. This
claim asserts that the reputational deterioration resulting from an inaccurate report strictly
exceeds the reputational growth that occurs with an accurate report. I.e., the sender has
more to lose from an erroneous report than she has to gain from a correct one. Consequently,
if an uninformed sender chooses to fake a report, she is choosing to take a binary gamble
where the cost incurred when losing (i.e., making an incorrect report) outweigh the benefit
earned when winning (i.e., making a correct report).

This result is due to the features of both the sender’s strategy and the reputation function
in equilibrium. We begin by observing that the equilibrium is one that is strictly informative
about the sender’s type, i.e., the reputation function is not constant. It follows that reporting
behavior exhibited more often by the bad type will cause her reputation to decline on
average. This holds in particular when the sender fakes, as it is done with positive probability
by the bad sender, but never by the good one. Because the uninformed sender holds a belief
1
2

about the states, a sender who fakes will be accurate half of the time. Thus, her expected
reputation from faking at time t is given by

Rt−1 +
αt − βt

2

In order to ensure that the faking sender’s reputation declines, it must be that αt < −βt.
Intuitively, the sender must be penalized for faking, otherwise, she would be guaranteed
to sustain a reputation of at least Rt−1 by the end of the period t, which is not possible in
any equilibrium that is informative about the sender’s type.

5.2. Speed

Next, we consider how the sender’s timing affects her reputation. Our key claim is the
following, which asserts that delaying reporting strictly damages the sender’s reputation.

Proposition 6 (Speed and reputation). In equilibrium, Rt is strictly decreasing in t.

The proof for this claim follows a backwards induction argument. We begin by arguing
that RT < RT−1. To see why this must hold, note that RT = RT (∅, 1) = RT (∅, 0), i.e., RT

equals the reputation the sender enjoys in the event that she stays silent through the course
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Figure 2: Dynamics of the sender’s reputation function. The
grey line denotes Rt, solid red (blue) line denotes reputation
from making an accurate (inaccurate report) at t. The dotted
red (blue) line shows dynamics of reputation for a sender
who makes an inaccurate (accurate) report in period 5.

of the entire game. If we assume by contradiction that RT ≥ RT−1, abstaining at time T
when uninformed serves as a profitable deviation: as we demonstrated above, this is due
to the fact that faking at time T yields a reputation strictly less than RT−1.

Next, let’s consider an arbitrary period t, and assume by contradiction that Rt ≥ Rt−1.
Unlike T , it does not directly follow that uninformed sender can profitably deviate by
abstaining at t. This is because the game does not end at t + 1, and her reputation may
decline following this. In particular, even if the sender starts period t + 1 with a relatively
high reputation Rt, if bt+1 is sufficiently high, her value from reporting will be relatively
low. This is because the more the bad sender reports on average (which is associated with
a higher bt+1), the worse reporting in t + 1 will be for her reputation, regardless of her
accuracy. Thus, in order to show that the sender can profitably deviate by abstaining in
period t when she is uninformed, we must show that bt+1 remains relatively low.

As we will now show, this follows directly from the inductive assumption that Rt >

Rt+1. Specifically, Rt > Rt+1 implies that bt+1 lies below some threshold b. 8. It is the unique
value of bt such that the good and bad sender abstain with equal probability, i.e., it is the
solution to the following equality: 1 − λG = (1 − λB)(1 − b). There is a clear intuition for
this: the more the bad sender fakes (i.e., the higher bt+1 is), the better abstaining must be
for the sender’s reputation, as it is less probable for the bad sender. This in turn results in

8 Formally, b ≡ λG−λB

1−λB
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a higher Rt+1. Thus, bt+1 must lie below the above threshold to ensure that Rt+1 does not
exceed Rt. This bound we obtain is sufficient to show that the uninformed sender at t can
profitably deviate by abstaining at t, thus showing that we cannot have Rt ≥ Rt−1.

5.3. Discussion

In this section we have shown that the equilibrium reputation function rewards the
sender for two qualities of her report: speed and accuracy. Thus, although the sender
is reputation-maximizing, she behaves as if she is maximizing some combination of speed
and accuracy. Notably, in canonical settings with exogenous payoff functions, it is often
assumed that her payoff is an increasing function of speed and accuracy (e.g., Wald (1947)).
We have shown that in a reputational setting, the same holds, but arises endogenously.
That is, while speed and accuracy may be of intrinsic value in the canonical setting, they
are in equilibrium of signaling value in a reputational setting.

The dynamics of the sender’s reputation, as well as the importance of both speed and
accuracy, are shown in Figure 2, which illustrates our findings from this section. As shown,
the sender’s reputation is dynamically discounted until the time in which she reports
(Proposition 6). Once she reports, her reputation will exhibit a strict upwards jump if her
report was accurate, and a downwards jump if it was inaccurate (Proposition 5). Also in
line with Proposition 5, we see that the loss in reputation the sender sustains from making
an inaccurate report exceeds the gain she enjoys when she makes an accurate one.

6. Dynamics in strategy

In this section, we examine dynamics in the sender’s strategy. We show that bt is strictly
decreasing in t, provided that λB lies below some bound.

Proposition 7 (Declining bt). In equilibrium, there exists a λ ∈ (0, λG) such that if λB < λ, bt is
strictly decreasing in t.

To understand why this result holds, first recall Proposition 6, which tells us that conditional
on not having reported, the sender’s reputation at the beginning of period t+1,Rt, must be
strictly less than her reputation at the beginning of period t, Rt−1. This means that all else
equal, and in particular if the bad sender were to employ the same strategy in both periods
(i.e., if bt = bt+1), reporting at time t provides the sender with a higher reputation than
reporting at time t+ 1 regardless of whether or not the report was accurate. For the sender
who is uninformed about the state at t, this makes faking at time t particularly attractive,
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as it ensures that she will enjoy a higher reputation on average than she would by faking
at time t+ 1 instead.

Thus, in order to ensure that the uninformed sender at t does not have a strict incentive
fake at time t, thus violating the indifference condition, she must be compensated for
waiting through two separate channels. First, by waiting, she will with positive probability
learn the state in the next period, and increase her chances of making an accurate report.
If however this probability (λB) is sufficiently small, she must instead be compensated
through a different channel: the reputation function. In particular, although the sender
starts off t+ 1 with a lower reputation, she must exhibit a greater boost in reputation from
actually reporting. To see why this implies that bt > bt+1, consider the relationship between
bt and the reputation function. Because a higher bt is associated with a higher probability
that the bad sender will report, the reputation function will respond by assigning a lower
reputation to reporting at time t (regardless of the sender’s accuracy). Thus, a greater
increase in reputation from reporting at t+ 1 will happen only if bt > bt+1.

Economically, this result tells us that a sender who is of sufficiently low ability becomes
more truthful as time passes, i.e., is less likely fake a report. This indicates that the sender’s
approach to reporting changes as the game progresses. As we have described above, the
sender has two separate means of convincing the receiver she is of high ability: the speed
of her report, and its accuracy. While both factors are present throughout the course of the
game, this result indicates that in earlier periods, the bad sender relies relatively more on
the speed approach to convince the receiver she is good, accomplished through a higher bt.
However, as time passes, she gradually shifts her behavior towards the accuracy approach,
by trying to convince the receiver she is good through her reluctance for dishonesty.

7. Conclusion

In this paper, we sought to understand the nature of news reporting by a sender who
is reputation-maximizing. Our analysis gave rise to several findings, regarding both the
sender’s reporting behavior as well as her incentives in equilibrium. First, we find that
in equilibrium, the sender will fake a report with positive probability in every period,
which entails reporting in the absence of knowledge about the state. Next, we find that
the sender is endogenously rewarded two separate qualities of their report: speed and
accuracy. We thus provide a reputational microfoundation for the speed-accuracy tradeoff
in the newsroom setting. We make a further observation about the nature of accuracy’s
importance: senders are in equilibrium penalized strictly more for inaccurate reporting
than they are rewarded for accurate reporting, meaning that erroneous reporting is more
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consequential for the sender’s reputation than accurate reporting. Finally, we explore
dynamics in the sender’s reporting behavior, finding that if the sender is of sufficiently low
ability, she will become strictly more truthful as time passes. This implies that misreports
by a sender who has a low a capability for learning are most probable in the immediate
aftermath of obtaining a lead, and becomes less probable as time passes.

While our model provides a simple framework for understanding reputation-driven
misreporting by news media, some of our findings warrant further investigation in more
general frameworks. In particular, it is not clear that the endogenous reputational reward
for both speed and accuracy obtained under our model will exist under a general learning
structure on the part of the sender, and even relaxing our selection assumption on the good
sender’s reporting behavior. Furthermore, it is unclear if additional reporting incentives
arise in a more general framework, beyond just speed and accuracy. These questions
present avenues for further research.
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8. Appendix

8.1. Relevant notation and properties

Before proceeding, we will introduce some relevant notation and properties which will
prove useful in the analysis which follows.

We begin with the sender’s value function. Let V i
t (m, p) denote type i sender’s value

from sending message m at time t when she holds belief p. If m = ∅ this is equal to the
sender’s continuation value. If m ∈ {0, 1}, this value is a linear function of the sender’s
belief p:

V i
t (m, p) = p̃R(m, 1) + (1− p̃)R(m, 0)

for m ∈ {0, 1}, where p̃ is the sender’s belief s = 1 will realize, formally p̃ ≡ pπ+(1−p)(1−
π). We further let V i

t (p) denote the sender’s value at time t under belief p.

Vt(p) ≡ max
m

Vt(m, p).

For brevity, in the analysis that follows, we will often drop the i superscript when referring
to the bad sender.

Next, we define a function of the sender’s strategy σ, which we call the effective arrival
rate. This denotes the probability with which the sender will know the state is either 0 or 1
at time t, respectively. We now formally define this object:
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Definition 2. The effective arrival rate of θ at time t is given by

λt,θB =

λB

2
if t = 1

(1− λt−1,1
B σt−1(∅, 1)− λt−1,0

B σt−1(∅, 0))λB

2
+ λt−1,θ

B σt−1(∅, θ) if t > 1

In the case where σs(∅, 0) = σs(∅, 1) for all s < t, which holds in much of the analysis
below, it follows from the above definition that λt,0B = λt,1B . Thus to simplify notation, we
will in these cases remove the state superscript from the effective arrival rate, and let

λtB ≡ λt,0B + λt,1B .

Now, we will formally define the sender’s interim reputation, which as noted in the
main text, denotes the receiver’s belief about the sender’s type, given that she has not
reported on or before t. While we provide a formula in the main text, that formula is only
relevant under the equilibrium strategy which we derive. The general formula follows
recursively from Bayes Rule and is given by the following for all t ∈ {1, ..., T}:

Rt =
1

1 + (1−Rt−1

Rt−1

λt,0
B σ(∅,0)+λt,1

B σ(∅,1)+(1−λt,0
B −λt,1

B )σ(∅, 1
2
)

1−λG
)
.

Meanwhile, the reputation functionRt(m, s) denotes the receiver’s belief that the sender
is the good type, given that she sends message m and time t, and the receiver observes
private signal s. Let Et denote the event that the sender does not report before time t, i.e.,
that τ ≥ t. Then Bayes Rule yields that for m ∈ {0, 1}:

Rt(m, s) =
1

1 + 1−Rt−1

Rt−1
Lt(m, s)

.

where Lt(m, s) ≡ Pr(m,s|B,Et)
Pr(m,s|G,Et)

, and Pr(m, s|i, Et) denotes the probability that (τ = t,m, s)

will realize, given that a sender of type i hadn’t reported before time t.

Proof of Lemma 1. Here we prove that the claim holds for θ = 1. I a symmetric argument
can be used to prove the claim for θ = 0.

Suppose by contradiction that σ(1, 0) = σ(1, 1
2
) = 0. Let Pr(m, s|i) denote the probability

that (m, s) is realized given the sender’s type is i. Then by Bayes Rule:

Pr(1, 1|B) = λBσ(1, 1)π and Pr(1, 1|G) = λGπ.
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It follows that
L(1, 1) = L(1, 0) =

λBσ(1, 1)

λG
< 1.

This in turn implies that V (p) ≥ V (1, p) > R0, i.e., that the bad sender’s reputation will
strictly improve with probability 1. Thus,Rmust be in violation of Bayes Rule: contradiction.

□

Proof of Lemma 2. Here, we prove that R(1, 1) > R(1, 0). That R(0, 0) > R(0, 1) follows
symmetrically. By the expression for R, showing R(1, 1) > R(1, 0) is equivalent to showing
that L(1, 1) < L(1, 0). It follows by Bayes Rule that

L(1, 1) =
1

λG
[
1− π

π
P (m = 1|θ = 0, B) + P (m = 1|θ = 1, B)]

L(1, 0) =
1

λG
[
π

1− π
P (m = 1|θ = 0, B) + P (m = 1|θ = 1, B)],

where P (m|θ, B) denotes the probability that message m is sent, given the state is θ and the
sender is bad. It is given by:

Pr(m|θ, B) = σ(m, θ)λB + σ(m,
1

2
)(1− λB).

It follows from Lemma 1 that Pr(m = 1|θ = 0, B) > 0. Since by assumption π > 1
2
, it

follows that L(1, 1) < L(1, 0). □

We will now prove a corollary of Lemma 2, which will be used in proving Proposition 1.
This corollary establishes strict monotonicity of the value functions:

Corollary 1. In any equilibrium, V (1, p) (V (0, p)) is strictly increasing (decreasing) in p.

Proof of Corollary 1. We will prove that V (1, p) is strictly increasing. That V (0, p) is strictly
decreasing follows symmetrically. Rerranging the above formula for V (1, p), we have:

V (1, p) = p(2π − 1)[R(1, 1)−R(1, 0)] + [R(1, 1)(1− π) +R(1, 0)π]

By Lemma 2, it follows that R(1, 1) − R(1, 0) > 0, and thus V (1, p) is strictly increasing in
p. □

Proof of Proposition 1. We will prove that σ(1, 1) = 1. That σ(0, 0) = 1 follows symmetrically.

We will now show σ(0, 1) = σ(∅, 1) = 0. First, suppose by contradiction that σ(0, 1) > 0.
It follows that message 0 is optimal under p = 1, and thus V (0, 1) ≥ V (1, 1). It follows from
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Corollary 1 that
V (0, p) > V (0, p) for all p < 1.

Thus, σ(1, 1
2
) = σ(1, 0) = 0. This is a contradiction of Lemma 1.

Now, suppose by contradiction that σ(∅, 1) > 0. To this end we first show that R(∅, 1) >
R(∅, 0). By the above formula for V , this is equivalent to showing that V (∅, 1) > V (∅, 1

2
),

which follows from the following chain of inequalities:

V (∅, 1) ≥ V (1, 1) > V (1,
1

2
) ≥ V (∅, 1

2
).

The first inequality in this chain follows from the assumption that message ∅ is optimal
under p = 1. The second inequality follows from Corollary 1. The third inequality holds
because σ(1, 0) = 0, which implies by Lemma 1 that σ(1, 1

2
) > 0.

Next, we show σ(∅, 0) = 0. It follows from Lemma 1 that V (∅, 1
2
) ≤ V (0, 1

2
). Because,

V (∅, ·) is strictly increasing while V (0, ·) is strictly decreasing, this implies V (∅, 0) < V (0, 0),
thus showing that σ(∅, 0) = 0. This implies:

P (m = ∅|θ = 0, B) = (1− λB)σ(∅,
1

2
) < λBσB(∅, 1) + (1− λB)σ(∅,

1

2
) = P (m = ∅|θ = 1, B)

which implies:

L(∅, 0) = (1− π)P (∅|1, B) + πP (∅|0, B)

1− λG
<
πP (∅|1, B) + (1− π)P (∅|0, B)

1− λG
= L(∅, 1).

This inequality on L is equivalent to R(∅, 0) > R(∅, 1), which is a contradiction of the
above. □

Proof of Proposition 2. We begin by proving the first part of the proposition, namely that
σ(m, 1

2
) > 0 for all m. First, note that because by Proposition 1 σ(1, 0) = σ(0, 1) = 0, in

order to satisfy Lemma 1, it must be that σ(m, 1
2
) > 0 for m ∈ {0, 1}. Next, suppose by

contradiction that σ(∅, 1
2
) = 0. It then follows by Lemma 1 that the bad sender never sends

message ∅. Because the good type does so with strictly positive probability, a ∅ message
will reveal that the sender is good, i.e., R(∅, 1) = R(∅, 0) = 1. Thus a report of ∅ serves as a
profitable deviation for the bad sender.

Next, we prove the second part of the proposition, namely, that σ(1, 1
2
) = σ(0, 1

2
). Assume

by contadiction that this does not hold. Without loss of generality, let us assume that

26



σ(1, 1
2
) > σ(0, 1

2
). By definition,

L(0, 0) =
(1− π)(1− λB)σ(0,

1
2
) + π(λB + (1− λB)σ(0,

1
2
))

πλG

<
(1− π)(1− λB)σ(1,

1
2
) + π(λB + (1− λB)σ(1,

1
2
))

πλG
= L(1, 1)

Furthermore,

L(0, 1) =
π(1− λB)σ(0,

1
2
) + (1− π)(λB + (1− λB)σ(0,

1
2
))

(1− π)λG

<
π(1− λB)σ(1,

1
2
) + (1− π)(λB + (1− λB)σ(1,

1
2
))

(1− π)λG
= L(1, 0)

It follows from these two inequalities that R(0, 0) > R(1, 1) and R(0, 1) < R(1, 0). Thus,

V (0,
1

2
) =

1

2
R(0, 0) +

1

2
R(0, 1) >

1

2
R(1, 1) +

1

2
R(1, 0) = V (1,

1

2
)

However, this implies that σ(1, 1
2
) = 0, which is a contradiction of the first part of the

claim. □

Before proceeding with the proof for Proposition 3, we introduce some relevant notation.
Recalling the definition of σb above, let Rb, V b, and Lb denote the reputation, value and
likelihood functions, respectively that are consistent with σb. Furthermore, let

X(b) ≡ V b(1,
1

2
)− V b(∅, 1

2
).

Proof of Proposition 3. We wish to show that there exists a unique b such that σb constitutes
an equilibrium. By Proposition 2, if σb constitutes an equilibrium, then X(b) = 0. So, we
begin by showing that there exists a unique b∗ ∈ (0, 1) such that X(b∗) = 0. To this end, we
make two observations about X(b):

1. X(b) is continuous and strictly decreasing in b. It suffices to show that V b(1, 1
2
) is

continuous and strictly decreasing in b and V b(∅, 1
2
) is continuous and strictly increasing

in b. First note that for all s ∈ {0, 1},

Lb(1, s) =
(1− λB)b/2 + Pr(s|θ = 1)λB

Pr(s|θ = 1)λG

which implies that Rb(1, s) is continuous and strictly decreasing in b for s ∈ {0, 1},
and thus that V b(1, 1

2
) is continuous and strictly decreasing in b.
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Next, note that

Lb(∅, s) = (1− λB)(1− b)

(1− λG)
for s ∈ {0, 1}

which implies thatRb(∅, s), and consequently V b(∅, 1
2
) is continuous and strictly increasing

in b for s ∈ {0, 1}.

2. X(0) > 0 and X(1) < 0. To show X(0) > 0, note that by the above formulae, for
s ∈ {0, 1},

L0(1, s) =
λB
λG

<
1− λB
1− λG

= L0(∅, s)

Thus, R0(1, s) > R0(∅, s) for s ∈ {0, 1}. Therefore, X(0) > 0. To show X(1) < 0, note
that for s ∈ {0, 1}, L1(1, s) > 0 = L1(∅, s). Thus, R1(1, s) < R1(∅, s) for all s ∈ {0, 1}.
Thus, X(1) < 0.

Combining the above two observations, it follows that there exists a unique b∗ ∈ (0, 1)

such that X(b∗) = 0. Thus we have shown that the only candidate equilibrium is (σb∗ , Rb∗).
It remains to confirm that this is indeed an equilibrium, i.e., that the sender cannot profitably
deviate at any possible belief.

Let us begin with the belief p = 1
2
. First, note that under mb∗

B , V b∗(1, 1
2
) = V b∗(0, 1

2
). Thus,

because X(b∗) = 0

V b∗(1/2) = V b∗(m, 1/2)for all m. (3)

Next, we will show there does not exist a profitable deviation when p = 1. That there
does not exist a profitable deviation when p = 0 follows symmetrically. To show this, first
note by definition of L:

• Lb∗(∅, 0) = Lb∗(∅, 1)

• Lb∗(1, 0) > Lb∗(1, 1)

• Lb∗(0, 1) > Lb∗(0, 0).

It follows from these three inequalities that

• V b∗(∅, p) is constant in p

• V b∗(1, p) is strictly increasing in p

• V b∗(0, p) is strictly decreasing in p.

It follows from (5) that
V b∗(1, 1) > V b∗(∅, 1) > V b∗(0, 1).

Thus, m = 1 is the unique best response at p = 1, and there is no profitable deviation. □
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8.2. Proofs for dynamic model

We begin by proving a Lemma that will be of use in our analysis below:

Lemma 4. In any equilibrium, Vt(1, p) (Vt(0, p)) is weakly increasing (decreasing) in p. Furthermore,
Vt(1, p) (Vt(0, p)) is strictly increasing (decreasing) in pwhenever σt(1, 0)+σt(1, 12) > 0 (σt(0, 1)+
σt(0,

1
2
) > 0).

Proof. We begin by proving that Vt(1, p) is weakly increasing in p. All results for Vt(0, p)
follow symmetrically. First recall that

Vt(1, p) = p(2π − 1)[Rt(1, 1)−Rt(1, 0)] + [Rt(1, 1)(1− π) +Rt(1, 0)π]

Thus, to show that Vt(1, p) is weakly increasing in p, it suffices to show that Rt(1, 1) ≥
Rt(1, 0). To show this, by definition of R, it suffices to show that Lt(1, 1) ≤ Lt(1, 0). This
holds by definition, since

Lt(1, 1) =
λt,1B σt(1, 1) + λt,0B

1−π
π
σt(1, 0) + (1− λt,1B − λt,0B )

σt(1,
1
2
)

2π

λG/2
≤

λt,1B σt(1, 1) + λt,0B
π

1−π
σt(1, 0) + (1− λt,1B − λt,0B )

σt(1,
1
2
)

2(1−π)

λG/2
= Lt(1, 0)

Now, suppose σt(1, 0)+ σt(1,
1
2
) > 0. In this case, the above weak inequality on Lt(1, 1) and

Lt(1, 0) will become a strict inequality, thus yielding that R(t, 1, 1) > R(t, 1, 0), and thus
that Vt(1, p) is strictly increasing in p. □

Proof of Lemma 3. Fix a t. Suppose by induction that all three claims hold for s < t (this
holds vacuously when t = 1).

We wish to show that σt(1, 0) = σt(0, 1) = 0, and that σt(m, 12) > 0 for m ∈ {0, 1}. We
first consider the case where λtB < λG. Let us begin by showing σt(1, 0) = σt(0, 1) = 0.
Suppose by contradiction that σt(0, 1) > 0. This implies by Lemma 4 that Vt(0, p) is strictly
decreasing in p. It thus follows that Vt(0, p) > Vt(1, p) for all p < 1. This, however, implies
that the sender will only ever report 1 when p = 1, i.e.,

σt(1, 0) = σt(1,
1

2
) = 0

Thus,

Lt(1, 1) = Lt(1, 0) =
λtBσt(1, 1)

λG
< 1
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Since by assumption λtB < λG, this implies that Rt(1, 1) = Rt(1, 0) > Rt−1, i.e., that the
sender can guarantee an improved reputation by reporting 1. This implies that all senders’
reputations would strictly improve at time t, implying that R must not be consistent with
Bayes Rule. Contradiction. That σt(1, 0) = 0 follows analogously. Next, we show that
σt(m,

1
2
) > 0 for m ∈ {0, 1}. Suppose by contradiction that σt(1, 12) = 0. Since we showed

above that σt(1, 0) = 0, we once again obtain that Rt(1, 1) = Rt(1, 0) > Rt−1, implying that
all senders would strictly improve their reputations at time t, implying thatRt must violate
Bayes’ Rule. Contradiction. that σt(0, 12) follows analogously.

Next, we consider the case where λtB ≥ λG. Note it follows form the definition of λtB that
σt−1(∅, 1) = σt−1(∅, 0) > 0. Because the good sender must be acting optimally and good
senders truthfully report arrivals, it follows that

Vt−1(1, 1) = Vt−1(∅, 1) = Vt(1, 1).

where the first equality follows from the fact that σt−1(∅, 1) = σt−1(∅, 0) > 0. Now suppose
by contradiction that σt(0, 1) > 0. Then by Lemma 4 Vt(1, p) is weakly increasing in p and
Vt(0, p) is strictly decreasing in p. This implies that σt(1, 12) = σt(1, 0) = 0. Then, again
applying Lemma 4, this implies that Vt(1, p) is constant in p. However, by the inductive
assumption

Vt−1(1,
1

2
) ≥ Vt−1(∅,

1

2
) ≥ λtBVt(1, 1) + (1− λtB)Vt(1,

1

2
) = Vt(1, 1).

where the final inequality follows from the fact that Vt(1, p) is constant in p. Combining
this with the prior established fact that Vt−1(1, 1) = Vt(1, 1), we obtain that Vt−1(1,

1
2
) ≥

Vt−1(1, 1). However, by the inductive assumption, σt−1(1,
1
2
) > 0, which implies byLemma 4

that Vt−1(1, p) is strictly increasing in p. Contradiction. Next, we wish to show that σt(m, 12) >
0 for m ∈ {0, 1}. Suppose by contradiction that σt(1, 12) = 0. By the previously established
fact that σt(1, 0) = 0, this implies by Lemma 4 that Vt(1, p) is constant in p. We would once
again obtain that Vt−1(1,

1
2
) ≥ Vt(1, 1), implying that Vt−1(1,

1
2
) ≥ Vt−1(1, 1), contradicting

the fact that Vt−1(1, p) must be strictly increasing in p (by the inductive assumption)

Next, we show that σt(∅, 1) = σt(∅, 0). Because we have established that σt(0, 1) =

σt(1, 0) = 0, it suffices to show that σt(1, 1) = σt(0, 0). Suppose not, i.e., suppose by
contradiction that σt(1, 1) > σt(0, 0).

First, I claim that Rt(0, 0) > Rt(1, 1). Suppose not, i.e., that Rt(0, 0) ≤ Rt(1, 1). By
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definition of R, this implies that Lt(1, 1) ≤ Lt(0, 0), i.e.,

λtBπσt(0, 0) + (1− λtB)σt(0,
1
2
)

πλG
≥
λtBπσt(1, 1) + (1− λtB)σt(1,

1
2
)

πλG

⇔ λtBπ(σt(1, 1)− σt(0, 0)) ≤ (1− λtB)(σt(0,
1

2
)− σt(1,

1

2
))

⇔ λtB(1− π)(σt(1, 1)− σt(0, 0)) < (1− λtB)(σt(0,
1

2
)− σt(1,

1

2
))

⇔ Lt(0, 1) > Lt(1, 0)

⇔ Rt(0, 1) < Rt(1, 0).

Thus, it follows that

Vt(0,
1

2
) =

Rt(0, 0) +Rt(0, 1)

2
<
Rt(1, 1) +Rt(1, 0)

2
= Vt(1,

1

2
).

However, this would violate the above established fact that σt(0, 12) > 0. Contradiction.

Next I claim that Rt(1, 0) > Rt(0, 1). To show this, assume by contradiction that that
Rt(0, 1) ≥ Rt(1, 0). Given our above result that Rt(1, 1) < Rt(0, 0), this would imply that

Vt(0,
1

2
) =

Rt(0, 0) +Rt(0, 1)

2
>
Rt(1, 1) +Rt(1, 0)

2
= Vt(1,

1

2
).

This contradicts the fact that σt(1, 12) > 0.

Next, we show that Vt(1, 1) < Vt(0, 0). To see this note that

Vt(1,
1

2
) = Vt(0,

1

2
) ⇔ [Rt(1, 1)−Rt(0, 0)] + [Rt(1, 0)−Rt(0, 1)] = 0

⇔ π[Rt(1, 1)−Rt(0, 0)] + (1− π)[Rt(1, 0)−Rt(0, 1)] < 0 ⇔ Vt(1, 1) < Vt(0, 0)

which follows from our earlier observations that Rt(1, 1) < Rt(0, 0) and Rt(1, 0) > Rt(0, 1).

Now, note that because by assumption σs is silence symmetric for all s < t, it follows that
the sender’s type is uncorrelated the state at time t. Formally, let Rt|θ denote the expected
reputation of the sender (from the receiver’s perspective), given that at time t she holds
prior belief Rt−1 about the sender’s type. Formally,

Rt|θ ≡ Rt−1[Vt(θ, θ)λG +Rt(1− λG)] + (1−Rt−1)[Vt(θ, θ)λB + Vt(θ,
1

2
)(1− λB)]

If the sender’s type is uncorrelated with the state at time t, it follows that Rt|θ=1 = Rt|θ=0.
However, it follows from the expression above that Rt|θ=0 > Rt|θ=1. This is a contradiction.
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Finally, we show that σt(1, 12) = σt(0,
1
2
). Suppose by contradiction that σt(1, 12) > σt(0,

1
2
).

Given that σt(1, 1) = σt(0, 0), this would imply that both Lt(1, 1) > Lt(0, 0) and Lt(1, 0) >

Lt(0, 1), due to the following inequalities:

Lt(1, 1) =
σt(1, 1)πλB + σt(1,

1
2
)1
2
(1− λB)

πλG
>
σt(0, 0)πλB + σt(0,

1
2
)1
2
(1− λB)

πλG
= Lt(0, 0)

Lt(1, 1) =
σt(1, 1)(1− π)λB + σt(1,

1
2
)1
2
(1− λB)

(1− π)λG
>
σt(0, 0)(1− π)λB + σt(0,

1
2
)1
2
(1− λB)

(1− π)λG
= Lt(0, 0)

This in turn implies that, Rt(1, 1) < Rt(0, 0) and Rt(1, 0) < Rt(0, 1), thus

Vt(1,
1

2
) =

Rt(1, 1) +Rt(1, 0)

2
<
Rt(0, 0) +Rt(0, 1)

2
= Vt(0,

1

2
)

Thus, σt(1, 12) = 0, a violation of the above lemma. □

Lemma 5 (Boundedness of bt). If σt(∅, 1) = 0 for all s ≥ t, then

bt <
λG − λtB
1− λtB

Proof. Suppose by contradiction that bt ≥
λG−λt

B

1−λt
B

.

First consider the case where t = T . Then,

LT (∅, 1) = LT (∅, 0) =
(1− λTB)(1− bT )

1− λG
≤ 1

where the final inequality follows from our assumption above on bT . It follows that

RT (∅, 1) = RT (∅, 0) ≥ RT−1.

Thus, VT (12) ≥ VT (∅, 12) ≥ RT−1. However, we also now that

VT (∅,
1

2
) ≤ VT (∅, 1) < VT (1)

Where the first inequality follows from part 3 of Lemma 3 combined with Lemma 4. But
then it follows from the above inequalities that the bad sender’s reputation at the end of
period T must on average strictly exceed her reputation at the the beginning of T :

λTBVT (1) + (1− λTB)VT (
1

2
) > RT−1
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meaning that the bad sender’s reputation on average strictly increases in period T , violating
Bayes Rule.

Next, consider the case where t < T . Assume by induction that bt+1 <
λG−λt+1

B

1−λt+1
B

. Because

by assumption σt(∅, 1) = 0, λt+1
B = λB, and thus the above inequality becomes

bt+1 <
λG − λB
1− λB

.

Next, assume by contradiction that bt ≥ λG−λt
B

1−λt
B

. This immediately implies two things:
Rt−1 ≤ Rt and bt > bt+1. I claim this then implies that

Rt(1, s) < Rt+1(1, s) for s ∈ {0, 1}. (4)

To see why this must hold, first note that

Rt(1, 1) =
1

1 + 1−Rt−1

Rt−1

λt
Bπ+(1−λt

B)bt/2

λGπ

Rt+1(1, 1) =
1

1 + 1−Rt

Rt

λt
Bπ+(1−λt

B)bt/2

λGπ

where because Rt ≥ Rt−1, bt ≥ λG−λB

1−λB
> bt+1, and the fact that λtB ≥ λB, it follows that

Rt(1, 1) < Rt+1(1, 1). One can analogously show that Rt(1, 0) < Rt+1(1, 1).

Next, note that
Vt(∅,

1

2
) = qRt+1(1, 1) + (1− q)Rt+1(1, 0)

where q ≡ πλB + 1
2
(1− λB) >

1
2
. Meanwhile,

Vt(1,
1

2
) =

1

2
Rt+1(1, 1) +

1

2
Rt+1(1, 0).

Then, applying Equation 4 these expressions, we obtain that Vt(∅, 12) > Vt(1,
1
2
). However,

this is a violation of part 2 of Lemma 3. Contradiction. □

Lemma 6 (Truthfully report arrivals). In any equilibrium, for every t

σt(1, 1) = σt(0, 0) = 1.

Proof. Recall that in Lemma 3, we showed σt(1, 0) = σt(0, 1). Thus to prove the proposition,
it suffices to show that σt(∅, 1) = σt(∅, 0) = 0 for all t. By part 1. of Lemma 3, it suffices
to show σt(∅, 1) = 0. Suppose by contradiction this is not the case. Let t∗ denote the last
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period such that this condition is not satisfied. Formally,

t∗ = max{t ∈ {1, ..., T}|σt(∅, 1) = 0}.

First consider the case where t∗ = T . In this case, because both messages ∅ and 1 must
be optimal under belief p in period T ,

VT (∅, 1) = VT (1, 1)

Secondly, by part 3 of Lemma 3:

VT (∅,
1

2
) ≤ VT (1,

1

2
).

Note further that by Lemma 4 combined with Lemma 3, it follows that VT (1, p) is strictly
increasing in p. Combining this with the two inequalities above, we obtain

VT (∅, 1) > VT (∅,
1

2
)

Since by Lemma 3 it follows that σT (∅, 0) > 0 as well, by analogous reasoning as above, we
also obtain that

VT (∅, 0) > VT (∅,
1

2
).

The above two inequalities imply that VT (∅, p) is not monotonic in p. However, recall that

VT (∅, p) = p(2π − 1)[RT (∅, 1)−RT (∅, 0)] + [RT (∅, 1)(1− π) +RT (∅, 0)π]

which is monotonic in p. Contradiction.

Next, consider the case in which t∗ < T . Because it is optimal for time t∗ + 1 senders
who know the state to report it truthfully,

Vt∗(1, 1) = Vt∗(∅, 1) = Vt∗+1(1, 1)

where the first equality follows from the fact that σt∗(∅, 1) > 0. Furthermore, in order to
ensure that faking at time t∗ is optimal, which must hold by Lemma 3,

Vt∗(1, 1) + Vt∗(1, 0)

2
≥ (λB +

1− λB
2

)Vt∗+1(1, 1) +
1− λB

2
Vt∗+1(1, 0)

This it follows that Vt∗(1, 0) > Vt∗(1, 0). This combined with our earlier equality Vt∗(1, 1) =
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Vt∗+1(1, 1) implies that

Rt∗(1, 1) < Rt∗+1(1, 1) and Rt∗(1, 0) > Rt∗+1(1, 0)

Recalling the above expression for the reputation function above, Rt∗(1, 0) > Rt∗+1(1, 0)

will hold only if

1−Rt∗−1

Rt∗−1

(σt∗(1, 1)λ
t∗

B (1−π)+
1

2
σt∗(1,

1

2
)(1−λt∗B )) <

1−Rt∗

Rt∗
(σt∗+1(1, 1)λ

t∗+1
B (1−π)+1

2
σt∗+1(1,

1

2
)(1−λt∗+1

B ))

Rearranging, this is equivalent to:

[
1−Rt∗−1

Rt∗−1

σt∗(1, 1)λ
t∗

B − 1−Rt∗

Rt∗
σt∗+1(1, 1)λ

t∗+1
B ](1− π) <

1

2
[
1−Rt∗

Rt∗
σt∗(1,

1

2
)(1− λt

∗+1
B )− 1−Rt∗−1

Rt∗−1

σt∗+1(1,
1

2
)(1− λt

∗

B )]

Next, I claim
1−Rt∗−1

Rt∗−1

σt∗(1, 1)λ
t∗

B − 1−Rt∗

Rt∗
σt∗+1(1, 1)λ

t∗+1
B > 0. (5)

Suppose by contradiction that the left-hand side is less than or equal to zero. By the above
inequality, it would then follow that

[
1−Rt∗−1

Rt∗−1

(σt∗(1, 1)λ
t∗

B−
1−Rt∗

Rt∗
(σt∗+1(1, 1)λ

t∗+1
B ]π <

1

2
σt∗+1(1,

1

2
)(1−λt∗+1

B )−1

2
σt∗(1,

1

2
)(1−λt∗B )

However, this holds if and only if Rt∗(1, 1) > Rt∗+1(1, 1), a contradiction of the above.

Now let us examine (5). First, note that since σt∗+1(1, 1) = 1, and by definition of λtB, it
must be that λt∗Bσt∗(∅, 1) < λt

∗+1
B , it must be that Rt∗−1 < Rt∗ . From our earlier expression

for Rt, this implies an upper bound on σt∗(1, 12)

1− λG > (1− λt
∗

B )(1− σt∗(1,
1

2
)) + λt

∗

Bσt∗(∅, 1) ⇔ σt∗(1,
1

2
) >

1− λt
∗+1
B

1− λt
∗
B

σt∗+1(1,
1

2
) (6)

Separately, recalling (5), the only way to ensure that both Rt∗(1, 1) < Rt∗+1(1, 1) and
Rt∗(1, 0) > Rt∗+1(0, 1) is if

σt∗(1,
1

2
) <

1− λt
∗+1
B σt+1(1,

1
2
)

1− λt
∗
B

. (7)
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Next, recall by Lemma 5 that bt∗+1 <
λG−λt∗+1

B

1−λt∗+1
B

substituting this into (7), we have

σt∗(1,
1

2
) <

λG − λtBσt(∅, 1)− (1− λtBσt(∅, 1))λB
1− λtB

,

which contradicts (6). □

Proof of Proposition 4. First, we show that in equilibrium σt(0, 0) = σt(1, 1) = 1. This
follows directly from part 2 of Lemma 3 and Lemma 6. Next, we must show that bt ≡
σt(1,

1
2
) = σt(0,

1
2
) > 0 at all t, which is given directly by Lemma 3. It remains to show

that bt < 1. Suppose not by contradiction. Then it follows that the sender can guarantee a
reputation of 1 by abstaining at t, regardless of her information. This is due to the fact that
bt = 1 implies that Rt = 1, and thus it follows from Bayes’ Rule that Rτ (m, s) = 1 for all m,
s, and τ ≥ t. Thus, abstaining at t serves as a profitable deviation. Contradiction.

Now, I establish existence of an equilibrium. I do so by invoking the Kakutani fixed
point theorem. As per the first part of the proof, we can restrict attention to strategies of
the form σb for the bad sender, where b ∈ [0, 1]T . Per the selection assumption, suppose
that for all t σG

t (1, 1) = σG
t (0, 0) = σG

t (∅, 12) = 1. I will later confirm that in the candidate
equilibria I identify, this strategy is optimal for G. I begin by defining a best response
correspondence. To this end, let Rb denot the unique reputation function that is consistent
with B playing σb, and G playing the truth-telling strategy above. Let V i,b

t denote the value
function for player i given reputation function Rb. Let ψt : [0, 1]

T → 2[0,1] denote the best
response correspondence for an uninformed B sender at time t given reputation function
Rb. Let φ ≡ ψ1 × ...× ψT . I claim that φ has a fixed point. To this end, note that

ψt(b) =


1 if V B,b

t (1, 1
2
) > V B,b

t (∅, 1
2
)

0 if V B,b
t (1, 1

2
) < V B,b

t (∅, 1
2
)

[0, 1] if V B,b
t (1, 1

2
) = V B,b

t (∅, 1
2
).

(8)

Thus, ψt(b) is convex and non-empty for all b. it follows that ψ(b) is also convex and non-
empty for all b. By the same reasoning as in the static case, V B,b

t is continuous in b for all
m ∈ {1, ∅}. It thus follows from (8) that ψ is upper hemi-continuous in b. It thus follows
from the Kakutani fixed point theorem that φ has a fixed point. I now claim that any fixed
point must lie in (0, 1)T . This follows directly from the first part of the proof. Take any such
fixed point b ∈ (0, 1)T . I claim that σG, σb, Rb is an equilibrium, thus establishing existence.
To this end, let us begin by showing tht the bad sender cannot profitably deviate. Fix a
t and consider a bad sender who has not yet learned the state, and thus holds belief 1

2
.
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It follows from the fact that b is a fixed point of ψ that V B,b
t (1, 1

2
) = V B,b

t (∅, 1
2
) and thus

σB
t (∅, 12) = b/2 is a best response. Next, consider a bad sender who has learned the state is

1, and thus holds belief p = 1. We want to show

V B,b
t (1, 1) > V B,b

t (∅, 1) V B,b
t (1, 1) > V B,b

t (0, 1)

The second statement holds because, given the strategy profile of the senders, Rb
t(1, 1) >

Rb
t(0, 1). The first statement holds because, given the strategy profile of the senders,Rb

t(1, 1) >

Rb
t+1(1, 1) for all t < T . It remains to show that the good sender cannot profitably deviate.

The good, informed sender cannot profitably deviate for the same reason that the bad
informed sender cannot deviate (they face the same value functions). Now, let us consider
the uninformed, good sender. Note that

V G,b
t (1,

1

2
) = V B,b

t (1,
1

2
) = V B,b

t (∅, 1
2
) ≤ V G,b

t (∅, 1
2
).

Thus, the good sender cannot profitably deviate at belief 1
2
. □

Proof of Proposition 6. Combining Lemma 6 and Lemma 5, it follows that for all t,

bt <
λG − λB
1− λB

.

Recall further that it follows from Lemma 3 that

Rt =
1

1 + 1−Rt−1

Rt−1

(1−λB)(1−bt)
1−λG

Combining this equality with the previous inequality on bt implies the statement. □

Proof of Proposition 7. Suppose by contradiction that bt ≤ bt+1. Under the equilibrium
strategy, for any τ ∈ 1, ..., T and s ∈ {0, 1},

Lτ (1, 1) =
Pr(s|θ = 1)λB + (1− λB)bτ/2

λGPr(s|θ = 1)

It follows from the assumption that Lt(1, s) ≤ Lt+1(1, s) for all s. Recalling that

Rt(1, s) =
1

1 + 1−Rt−1

Rt−1
Lt(1, s)

Proposition 6 above then implies that Rt(1, s) < Rt+1(1, s) for s ∈ {0, 1}.
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Next, recall the value of the uninformed sender at time t from reporting 1 is given by:

Vt(1,
1

2
) =

Rt(1, 1) +Rt(1, 0)

2

Meanwhile, her value from abstaining at t is given by:

Vt(∅,
1

2
) = (λBπ + (1− λB

2
)Rt+1(1, 1) +

1− λB
2

Rt+1(1, 0)

It follows from the above inequalities that there exists a λB such that if λB < λB, Vt(∅, 12) <
Vt(1,

1
2
). However, this is a contradiction of the equilibrium characterization above, which

requires indifference between messages ∅ and 1 when p = 1
2
.

□

Proof of Proposition 5. First, we establish that for all t, αt > 0. Suppose not, by contradiction.
Let us begin by establishing a set of inequalities. First, note that

Rt(1, 1) = Rt−1 + αt ≤ Rt−1.

Separately, Rt(1, 1) > Rt(1, 0). This holds by identical reasoning to what is presented in
Lemma 2 (i.e., the static case). This implies that Rt(1, 0) < Rt−1. Finally, by Proposition 6,
Rt < Rt−1.

Now, assume that at time t − 1, the sender has not yet reported. Then, the receiver’s
expected time-t belief about the sender’s type at time t− 1 is given by

Et−1[Prt[θ = G]] = 2Prt−1(mt = 1 = s)Rt(1, 1) + 2Prt−1(mt = 1 ̸= s)Rt(1, 0)

+(1− 2Prt−1(mt = 1 = s)− 2Pr(mt = 1 ̸= s))Rt

Since λB < 1 and bt < 1 (by Proposition 4), Prt−1(mt = 1 ̸= s) > 0. Combining this with
the above-established inequalities that Rt(1, 1) ≤ Rt−1, Rt(1, 0), Rt−1, and Rt < Rt−1 yields

Et−1[Prt[θ = G]] < Rt−1 = Prt−1[θ = G].

This is the violation of the martingale property of the receiver’s belief about the sender’s
type. Contradiction.

Now, we claim that for all t, αt < −βt. Note that having established that αt > 0, this also
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implies that β < 0. To show this, suppose by contradiction that αt ≥ −βt. Then,

V i
t (1) = V i

t (1, 1) = Rt−1 + παt − (1− π)βt > Rt−1 for all i ∈ {B,G},

where the first equality follows from Proposition 4 and the strict inequality follows from
the above-established fact that αt > 0. Separately,

V B
t (

1

2
) = V B

t (
1

2
, 1) = Rt−1 +

1

2
αt −

1

2
βt ≥ Rt−1

Finally, I claim that V G
t (1

2
) ≥ V B

t (1
2
). We prove this using backwards induction. Note that

in the base, case we have
V G
T (

1

2
) = V B

T (
1

2
) = RT (∅)

where the final inequality again follows from Proposition 4. Now, fix any t < T , and
suppose by induction that V G

t+1(
1
2
) ≥ V B

t+1(
1
2
). We want to show that V G

t (1
2
) ≥ V B

t (1
2
). To this

end, note that
V i
t (
1

2
) = V i

t (
1

2
, ∅) = λiV

i
t+1(1, 1) + (1− λi)V

i
t+1(

1

2
)

Then

V G
t (

1

2
)− V B

t (
1

2
) = (λG − λB)[V

G
t+1(1, 1)− V B

t+1(1, 1)] + (1− λG)[V
G
t+1(

1

2
)− V B

t+1(
1

2
)]

Since V G
t+1(

1
2
) ≥ V B

t+1(
1
2
) by the inductive assumption, it suffice to show V G

t+1(1, 1) ≥ V B
t+1(

1
2
).

This indeed holds, since

V B
t+1(

1

2
) = V B

t+1(
1

2
, 1) =

1

2
Rt+1(1, 1)+

1

2
Rt+1(1, 0) < πRt+1(1, 1)+(1−π)Rt+1(1, 0) = V G

t+1(1, 1).

Now, once again assume that at time t, the sender has not yet reported. Then it follows
from Bayes Rule that

Et−1[PrT [θ = G]] = Prt−1[θ = G]Et−1[PrT [θ = G]|θ = G] + Prt−1[θ = B]Et−1[PrT [θ = G]|θ = B]

= Rt−1(λGVt(1, 1) + (1− λG)V
G
t (

1

2
)) + (1−Rt−1)(λBVt(1, 1) + (1− λB)V

B
t (

1

2
))

Since λG > 0 and λB > 0, it follow sfrom the above inequalities that Et−1[PrT [θ = G]] >

Rt−1 = Prt−1[θ = G]. This is a violation of the Martingale property of the receiver’s belief
about the sender’s type. Contradiction.

□
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